Yazar "Supadi, Siti Suzlin" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Some new fractional corrected Euler-Maclaurin type inequalities for function whose second derivatives are s-convex function(Taylor & Francis Inc, 2024) Munir, Arslan; Vivas-Cortez, Miguel; Qayyum, Ather; Budak, Hüseyin; Faiz, Irza; Supadi, Siti SuzlinFractional integrals and inequalities have gained a lot of attention in recent years. By introducing innovative analytical approaches and applications, and by applying these approaches, numerous forms of inequalities have been examined. In this paper, we establish new identity for the twice differentiable function where the absolute value is convex. By utilizing this identity, numerous Corrected Euler-Maclaurin-type inequalities are developed for the Caputo-Fabrizio fractional integral operator. Based on this identity, the Corrected Euler-Maclaurin-type inequalities for $s$s-convex function are obtained. By employing well-known inequalities such as H & ouml;lder's and Power -Mean, we are introduced several new error bounds and estimates for Corrected Euler-Maclaurin-type inequalities. Additionally, special cases of the present results are applied to obtain the previous well-known results.Öğe A study of Milne-type inequalities for several convex function classes with applications(Univ Nis, Fac Sci Math, 2024) Munir, Arslan; Qayyum, Ather; Budak, Huseyin; Faiz, Irza; Kara, Hasan; Supadi, Siti SuzlinFractional integral operators have indeed been the subject of significant research in various mathematical and scientific disciplines over the past few decades. The main aim of this article is to establish a new identity employing the Atangana Baleanu fractional integral operator for the case of differentiable functions. Moreover, we present several fractional Milne-type inequalities for bounded function by fractional integrals. Furthermore, we obtain fractional Milne-type inequalities for the case of Lipschitzian functions. Lastly, we explore applications related to special means, and quadrature formulas.Öğe A Study of Some New Hermite-Hadamard Inequalities via Specific Convex Functions with Applications(Mdpi, 2024) Junjua, Moin-ud-Din; Qayyum, Ather; Munir, Arslan; Budak, Hüseyin; Saleem, Muhammad Mohsen; Supadi, Siti SuzlinConvexity plays a crucial role in the development of fractional integral inequalities. Many fractional integral inequalities are derived based on convexity properties and techniques. These inequalities have several applications in different fields such as optimization, mathematical modeling and signal processing. The main goal of this article is to establish a novel and generalized identity for the Caputo-Fabrizio fractional operator. With the help of this specific developed identity, we derive new fractional integral inequalities via exponential convex functions. Furthermore, we give an application to some special means.












