Yazar "Soner, B." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Federated Learning in Vehicular Networks(Institute of Electrical and Electronics Engineers Inc., 2022) Elbir, Ahmet M.; Soner, B.; Çöleri, S.; Gunduz, D.; Bennis, M.Machine learning (ML) has recently been adopted in vehicular networks for applications such as autonomous driving, road safety prediction and vehicular object detection, due to its model-free characteristic, allowing adaptive fast response. However, most of these ML applications employ centralized learning (CL), which brings significant overhead for data trans-mission between the parameter server and vehicular edge devices. Federated learning (FL) framework has been recently introduced as an efficient tool with the goal of reducing transmission overhead while achieving privacy through the transmission of model updates instead of the whole dataset. In this paper, we investigate the usage of FL over CL in vehicular network applications to develop intelligent transportation systems. We provide a comprehensive analysis on the feasibility of FL for the ML based vehicular applications, as well as investigating object detection by utilizing image-based datasets as a case study. Then, we identify the major challenges from both learning perspective, i.e., data labeling and model training, and from the communications point of view, i.e., data rate, reliability, transmission overhead, privacy and resource management. Finally, we highlight related future research directions for FL in vehicular networks. © 2022 IEEE.Öğe Vehicular networks for combating a worldwide pandemic: Preventing the spread of COVID-19(Elsevier B.V., 2022) Elbir, Ahmet M.; Gürbilek, G.; Soner, B.; Papazafeiropoulos, A.K.; Kourtessis, P.; Çöleri, S.As a worldwide pandemic, the coronavirus disease-19 (COVID-19) has caused serious restrictions in people's social life, along with the loss of lives, the collapse of economies and the disruption of humanitarian aids. Despite the advance of technological developments, we, as researchers, have witnessed that several issues need further investigation for a better response to a pandemic outbreak. Therefore, researchers recently started developing ideas to stop or at least reduce the spread of the pandemic. While there have been some prior works on wireless networks for combating a pandemic scenario, vehicular networks and their potential bottlenecks have not yet been fully examined. Furthermore, the vehicular scenarios can be identified as the locations, where the social distancing is mostly violated. With this motivation, this article provides an extensive discussion on vehicular networking for combating a pandemic. We provide the major applications of vehicular networking for combating COVID-19 in public transportation, in-vehicle diagnosis, border patrol and social distance monitoring. Next, we identify the unique characteristics of the collected data in terms of privacy, flexibility and coverage, then highlight corresponding future directions in privacy preservation, resource allocation, data caching and data routing. We believe that this work paves the way for the development of new products and algorithms that can facilitate the social life and help controlling the spread of the pandemic. © 2022 Elsevier Inc.