Yazar "Soliman, Eslam" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Flexural Behavior of a Novel Textile-Reinforced Polymer Concrete(Mdpi, 2022) Murcia, Daniel Heras; Çomak, Bekir; Soliman, Eslam; Reda Taha, Mahmoud M.Textile reinforced concrete (TRC) has gained attention from the construction industry due to its light weight, high tensile strength, design flexibility, corrosion resistance, and remarkably long service life. Some structural applications that utilize TRC components include precast panels, structural repair, waterproofing elements, and facades. TRC is produced by incorporating textile fabrics into thin cementitious concrete panels. Premature debonding between the textile fabric and concrete due to improper cementitious matrix impregnation of the fibers was identified as a failure-governing mechanism. To overcome this performance limitation, in this study, a novel type of TRC is proposed by replacing the cement binder with a polymer resin to produce textile reinforced polymer concrete (TRPC). The new TRPC is created using a fine-graded aggregate, methyl methacrylate polymer resin, and basalt fiber textile fabric. Four different specimen configurations were manufactured by embedding 0, 1, 2, and 3 textile layers in concrete. Flexural performance was analyzed and compared with reference TRC specimens with similar compressive strength and reinforcement configurations. Furthermore, the crack pattern intensity was determined using an image processing technique to quantify the ductility of TRPC compared with conventional TRC. The new TRPC improved the moment capacity compared with TRC by 51%, 58%, 59%, and 158%, the deflection at peak load by 858%, 857%, 3264%, and 3803%, and the toughness by 1909%, 3844%, 2781%, and 4355% for 0, 1, 2, and 3 textile layers, respectively. TRPC showed significantly improved flexural capacity, superior ductility, and substantial plasticity compared with TRC.Öğe Flexural behavior of polymer-based textile-reinforced concrete using basalt fibers(Crc Press-Balkema, 2019) Çomak, Bekir; Soliman, Eslam; Chennareddy, Rahulreddy; Taha, Mahmoud RedaTextile reinforced concrete (TRC) is a class of cementitous composites that entails several advantages compared to traditional reinforced concrete such as lightweight, high tensile strength, design flexibility, and potentially corrosion free. As a result, TRC is suggested in a variety of structural applications including facades, protection panels, bridges, and waterproofing systems. A typical TRC element consists of multiple fiber fabrics embedded in thin cementitous concrete plate. Previous research reported a high potential for debonding between the fiber fabrics and the surrounding cementitous matrix due to poor impregnation and relatively high voids content. Recently, a new class of TRC is introduced by replacing the cementitious matrix by a polymer matrix to overcome the debonding problem. In this paper, textile-reinforced polymer concrete (TRPC) is produced using basalt fiber textile mesh and fine-grained Methyl Methacrylate (MMA) polymer concrete. Four different specimen configurations were produced by incorporating 0, 1, 2, and 3 textile layers in polymer concrete. Three-point bending test was carried out to examine the flexural performance of the TRPC specimens and the flexural strength of the different configurations was compared. In addition, the crack pattern intensity was determined via image processing technique to assess the ductility of TRPC. Comparison between different TRPC configurations reveals that increasing the number of fabric layers significantly improves the flexural behavior of TRPC.