Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Singh, Narinder" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    An improved honey badger algorithm for global optimization and multilevel thresholding segmentation: real case with brain tumor images
    (Springer, 2024) Houssein, Essam H.; Emam, Marwa M.; Singh, Narinder; Samee, Nagwan Abdel; Alabdulhafith, Maali; Celik, Emre
    Global optimization and biomedical image segmentation are crucial in diverse scientific and medical fields. The Honey Badger Algorithm (HBA) is a newly developed metaheuristic that draws inspiration from the foraging behavior of honey badgers. Similar to other metaheuristic algorithms, HBA encounters difficulties associated with exploitation, being trapped in local optima, and the pace at which it converges. This study aims to improve the performance of the original HBA by implementing the Enhanced Solution Quality (ESQ) method. This strategy helps to prevent becoming stuck in local optima and speeds up the convergence process. We conducted an assessment of the enhanced algorithm, mHBA, by utilizing a comprehensive collection of benchmark functions from IEEE CEC'2020. In this evaluation, we compared mHBA with well-established metaheuristic algorithms. mHBA demonstrates exceptional performance, as shown by both qualitative and quantitative assessments. Our study not only focuses on global optimization but also investigates the field of biomedical image segmentation, which is a crucial process in numerous applications involving digital image analysis and comprehension. We specifically focus on the problem of multi-level thresholding (MT) for medical image segmentation, which is a difficult process that becomes more challenging as the number of thresholds needed increases. In order to tackle this issue, we suggest a revised edition of the standard HBA, known as mHBA, which utilizes the ESQ approach. We utilized this methodology for the segmentation of Magnetic Resonance Images (MRI). The evaluation of mHBA utilizes existing metrics to gauge the quality and performance of its segmentation. This evaluation showcases the resilience of mHBA in comparison to many established optimization algorithms, emphasizing the effectiveness of the suggested technique.

| Düzce Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Düzce Üniversitesi, Kütüphane ve Dokümantasyon Daire Başkanlığı, Düzce, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim