Yazar "Sen, Yasar" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Detailed experimental investigation and optimization of oxygenated diglyme-diesel-n-pentanol ternary blends oncompression ignition engine behaviors(Springer, 2024) Babu, J. Paul Rufus; Sivarajan, C.; Prasad, B. Durga; Rajak, Upendra; Sen, Yasar; Agbulut, UmitThe aim of this study is to evaluate the performance of engines and the produced emissions by adding diethylene glycol dimethyl ether (DGM), an oxygen-rich additive with a high cetane number, into n-pentanol and diesel fuel blends. Using pure diesel (OXG0) as the benchmark, five fuel blends were tested in a single-cylinder compression ignition engine. While always keeping a diesel ratio of 70%, the blends displayed a range of DGM content ranging from 5 to 20%. Analysis showed that by 1.27% in contrast to pure diesel, the mix of 70% diesel, 10% n-pentanol and 20% DGM (OXG4) enhanced brake thermal efficiency (BTE). Moreover, OXG4 was shown to be efficient in lowering CO and NOx emissions under all load conditions, therefore demonstrating its ability to control negative emissions. Still, when the DGM content rose, CO2 emissions clearly started to rise-probably because of improved combustion efficiency. Furthermore, the study showed that compared to OXG0 other blends-OXG1, OXG2 and OXG3-often produced greater brake-specific fuel consumption and slightly worse BTE. The findings highlight the feasibility of DGM as a suitable additive to enhance diesel fuel blends to get better emission characteristics without appreciably compromising engine performance.Öğe Investigating a Novel Design Dental Implant by Using Finite Element Analysis and Experimental Setup(Amer Scientific Publishers, 2020) Sen, YasarObjectives: In this study, dental implants with three different tooth pitch are designed and tested under static loads and fatigue analysis. In order to reveal the strengths of the different implant designs in dental implant application, the experimental setup where real physical environments were created experimental data was obtained, and these data were compared with numerical data. Materials and Methods: It is difficult to find an analytical solution for problems involving complex geometries. For this reason, numerical methods such as finite element analysis (FEA) are used. For compared finite element results and experimental analysis a new experimental setup has been created to simulate the physical conditions inside the mouth. In this arrangement, the temperature is close to ideal with the acidic environment inside the mouth. Firstly, the geometrical implant system determined on the CNC machine was produced. Results and Conclusion: In this study, dental implant research with 3 different screw pitch was performed. The results obtained from the experimental results were compared with the results obtained from the numerical analysis and it was observed that the accuracy of the numerical analysis was approximately 95%. It was observed that the tensions were less in the dental implant with higher number of screw pitch. In terms of the difficulty of experimental studies, finite element analysis saved both time and money. Thanks to this method, different scenarios can be applied to the optimum design of the dental implant and it can be designed in a computer environment before applying to the patient.