Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Sarigul, Figen" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Assisting the Diagnosis of Cirrhosis in Chronic Hepatitis C Patients Based on Machine Learning Algorithms: A Novel Non-Invasive Approach
    (Wiley, 2025) Dirican, Emre; Bal, Tayibe; Onlen, Yusuf; Sarigul, Figen; User, Ulku; Sari, Nagehan Didem; Kurtaran, Behice
    Aim: This study aimed to determine the important features and cut-off values after demonstrating the detectability of cirrhosis using routine laboratory test results of chronic hepatitis C (CHC) patients in machine learning (ML) algorithms. Methods: This retrospective multicenter (37 referral centers) study included the data obtained from the Hepatitis C Turkey registry of 1164 patients with biopsy-proven CHC. Three different ML algorithms were used to classify the presence/absence of cirrhosis with the determined features. Results: The highest performance in the prediction of cirrhosis (Accuracy = 0.89, AUC = 0.87) was obtained from the Random Forest (RF) method. The five most important features that contributed to the classification were platelet, alpha lpha-feto protein (AFP), age, gamma-glutamyl transferase (GGT), and prothrombin time (PT). The cut-off values of these features were obtained as platelet < 182.000/mm3, AFP > 5.49 ng/mL, age > 52 years, GGT > 39.9 U/L, and PT > 12.35 s. Using cut-off values, the risk coefficients were AOR = 4.82 for platelet, AOR = 3.49 for AFP, AOR = 4.32 for age, AOR = 3.04 for GGT, and AOR = 2.20 for PT. Conclusion: These findings indicated that the RF-based ML algorithm could classify cirrhosis with high accuracy. Thus, crucial features and cut-off values for physicians in the detection of cirrhosis were determined. In addition, although AFP is not included in non-invasive indexes, it had a remarkable contribution in predicting cirrhosis. Trial Registration: Clinicaltrials.gov identifier: NCT03145844

| Düzce Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Düzce Üniversitesi, Kütüphane ve Dokümantasyon Daire Başkanlığı, Düzce, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim