Yazar "Ozturk, Nihat" seçeneğine göre listele
Listeleniyor 1 - 6 / 6
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe (1+PD)-PID cascade controller design for performance betterment of load frequency control in diverse electric power systems(Springer London Ltd, 2021) Celik, Emre; Ozturk, Nihat; Arya, Yogendra; Ocak, CemilIn our world of today developing incredibly fast, load frequency control (LFC) is an indispensable and vital element in increasing the standard of living of a country by providing a good quality of electric power. To this end, rapid and notable development has been recorded in LFC area. However, researchers worldwide need for the existence of not only effective but also computationally inexpensive control algorithm considering the limitations and difficulties in practice. Hence, this paper deals with the introduction of (1 + PD)-PID cascade controller to the relevant field. The controller is simple to implement and it connects the output of 1 + PD controller with the input of PID controller where the frequency and tie-line power deviation are applied to the latter controller as feedback signals also, which is the first attempt made in the literature. To discover the most optimistic results, controller gains are tuned concurrently by dragonfly search algorithm (DSA). For the certification purpose of the advocated approach, two-area thermal system with/without governor dead band nonlinearity is considered as test systems initially. Then single/multi-area multi-source power systems with/without a HVDC link are employed for the enriched validation purpose. The results of our proposal are analyzed in comparison with those of other prevalent works, which unveil that despite its simplicity, DSA optimized (1 + PD)-PID cascade strategy delivers better performance than others in terms of smaller values of the chosen objective function and settling time/undershoot/overshoot of the frequency and tie-line power deviations following a step load perturbation.Öğe Advancement of the search process of salp swarm algorithm for global optimization problems(Pergamon-Elsevier Science Ltd, 2021) celik, Emre; Ozturk, Nihat; Arya, YogendraThis paper propounds a modified version of the salp swarm algorithm (mSSA) for solving optimization problems more prolifically. This technique is refined from the base version with three simple but effective modifications. In the first one, the most important parameter in SSA responsible for balancing exploration and exploitation is chaotically changed by embedding a sinusoidal map in it to catch a better balance between exploration and exploitation from the first iteration until the last. As a short falling, SSA can't exchange information amongst leaders of the chain. Therefore, a mutualistic relationship between two leader salps is included in mSSA to raise its search performance. Additionally, a random technique is systematically applied to the follower salps to introduce diversity in the chain. This can be since there may be some salps in the chain that do not necessarily follow the leader for exploring unvisited areas of the search space. Several test problems are solved by the advocated approach and results are presented in comparison with the relevant results in the available literature. It is ascertained that mSSA, despite its simplicity, significantly outperforms not only the basic SSA but also numerous recent algorithms in terms of fruitful solution precision and convergent trend line.Öğe Commutation current ripple minimization of brushless DC motor drive based on programmed phase current references(Springer, 2021) Celik, Emre; Ozturk, NihatAlthough direct phase current control of brushless DC motor prevents commutation current ripple at low speed, it occurs at high speed which has not received the deserved attention in the literature. Dealing with this current ripple is of practical significance because commutation becomes more influential for high speeds as its duration and the current ripple's amplitude increase with speed. This paper concerns with the successful application of a fuzzy logic estimator (FLE) as an expert control technique to minimize the so-called current ripple profitably. Phase current reference waveforms are programmed as a function of commanded current, angular position, and commutation angle which is adjusted online by the developed FLE as per the motor working condition. The presented approach renders the current references with changing but equal slopes during commutation to keep the other phase current constant at all times. A genetic algorithm is also deployed to optimize the FLE's rule table. Unlike the reported researches, this study does not require calculating commutation time, and use of torque observer and/or commutation detection circuits. The acceptability of our proposal is widely illustrated by simulated and experimental results using DSP TMS320F28335, which signifies that prolific performance toward commutation current ripple minimization is achieved.Öğe Improving speed control characteristics of PMDC motor drives using nonlinear PI control(Springer London Ltd, 2024) Celik, Emre; Bal, Gungor; Ozturk, Nihat; Bekiroglu, Erdal; Houssein, Essam H.; Ocak, Cemil; Sharma, GulshanThis paper introduces a nonlinear PI controller for improved speed regulation in permanent magnet direct current (PMDC) motor drive systems. The nonlinearity comes from the exponential (Exp) block placed in front of the classical PI controller, which uses a tunable exponential function to map the speed error nonlinearly. Such a configuration has not been studied till now, thus meriting further investigation. We consider an exponential PI (EXP-PI) controller and to attain the best performance from this controller, its parameters are optimized offline using salp swarm algorithm (SSA), which borrows its inspiration from the way of forage and navigation of salps living in deep oceans. To indicate the credibility of SSA tuned EXP-PI controller convincingly, numerous experiments on speed regulation in PMDC motor have been implemented using DSP of TMS320F28335. The results obtained are also compared to similar results in the literature. It is shown that the proposed approach performs well in practice by ensuring tight tracking of the speed reference and superb torque disturbance rejection for the closed loop control. Furthermore, superior performance is achieved by the proposed nonlinear PI controller with respect to a fixed-gain PI controller.Öğe A new objective function design for optimization of secondary controllers in load frequency control(Gazi Univ, Fac Engineering Architecture, 2021) Yilmaz, Zumre Yenen; Bal, Gungor; Celik, Emre; Ozturk, Nihat; Guvenc, Ugur; Arya, YogendraIn this study, load frequency control (LFC) of two-area non-reheat thermal power system and multi-source power systems is addressed. A simple PID-structured controller is used as a secondary controller in these systems. To raise the performance of PID controller, a new multi-objective function is designed and PID controller parameters are acquired by minimizing the value of this function with symbiotic organisms search (SOS) algorithm. All electrical power systems simulated are modeled in MATLAB/Simulink environment and the optimizer is coded in MATLAB/M-file platform. In order to affirm the contribution of the work, results collected from each power system are compared with popular results published in prestigious journals. As per the comparative results, despite its simplicity, SOS:PID controller tuned via the proposed objective function is observed to result in better performance than other approaches in terms of oscillations, settling time, maximum overshoot and maximum undershoot time domain indicators of the frequency and tie-line power change curves.Öğe Wind turbine speed control of a contactless piezoelectric wind energy harvester(Taylor & Francis Ltd, 2020) Celik, Emre; Kurt, Erol; Ozturk, NihatWind turbine control is an important task to make the electricity generation secure in terms of energy demand and machine safety. It also yields to control the desired power level and optimized energy because of the assignment of turbine speed. The contactless piezoelectric wind energy harvester (CPWEH) used in this study has three piezoelectric layers located around the shaft with 120 degrees apart and they are buckled by the magnetic force without any physical contact. The superiority of this device is to generate energy for low wind speeds such as 1.5 m/s. However, for high speeds, high total harmonic distortions (THDs) govern the waveforms, thus controlling the turbine speed becomes necessary for optimizing the output power. Encouraged by this, a small low inertia dc generator is coupled with the wind turbine, and the generator terminals are connected to a resistor through a power switch to generate a braking torque that opposes to wind speed direction. By controlling the switch properly, turbine speed is ensured to remain within a certain band, which accordingly prevents the turbine from rotating very fast at damaging wind speeds. Several experiments are performed on the developed CPWEH with/without the presented control scheme which prove the existence of promising performance of our proposal.