Yazar "Ozkaya, Burcin" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Combined heat and power economic emission dispatch using dynamic switched crowding based multi-objective symbiotic organism search algorithm(Elsevier, 2024) Ozkaya, Burcin; Kahraman, Hamdi Tolga; Duman, Serhat; Guvenc, Ugur; Akbel, MustafaCombined heat and power economic emission dispatch (CHPEED) problem is a highly complex, non-linear, non -convex multiobjective optimization problem due to two conflicting objectives and various operational constraints such as valve-point loading effect, power transmission loss, prohibited operating zone, and the feasible operating region of combined heat and power unit. In order to overcome these challenges, it is necessary to design an algorithm that exhibits a search behavior, which is suitable for the characteristics of objective and constraint space of the CHPEED problem. For these reasons, a dynamic switched crowding based multi-objective symbiotic organism search (DSC-MOSOS) algorithm was designed to meet the requirements and geometric space of the CHPEED problem. By applying the DSC method in the MOSOS algorithm, it was aimed to improve the exploration ability, to strengthen exploitation-exploration balance, and to prevent the catching into local solution traps. A comprehensive experimental study was carried out to prove the performance of the proposed al-gorithm on IEEE CEC 2020 multi-modal multi-objective problems (MMOPs) and CHPEED problem. In the experimental study conducted among eleven versions of MOSOS variations created with DSC-method and the base MOSOS algorithm on IEEE CEC 2020 MMOPs, according to Friedman scores based on the four performance metrics, the base MOSOS algorithm ranked the last. In other experimental study, the best DSC-MOSOS variant was applied to solve the CHPEED problem, where 5-, 7-, 10-and 14-unit test systems and eight case studies were considered. The important points of this study were that 10-unit and 14-unit test systems were presented to the literature, and the prohibited operating zone was considered in CHPEED problem for the first time. According to the results obtained from eight case studies obtained from the DSC-MOSOS and fourteen competitor algorithms, while the improvement in cost was between 0.2% and 16.55%, the reduction of the emission value was between 0.2 kg and 42.97 kg compared to the competitor algorithms. On the other hand, the stability of the DSC-MOSOS and the base MOSOS was evaluated using stability analysis. While the MOSOS algorithms was not able to perform a success in any case study, the DSC-MOSOS was achieved an average success rate with 91.16%. Thus, the performance of the DSC-MOSOS over the MOSOS was verified by the results of experimental studies and analysis.Öğe Energy Hub Economic Dispatch by Symbiotic Organisms Search Algorithm(Springer International Publishing Ag, 2020) Guvenc, Ugur; Ozkaya, Burcin; Bakir, Huseyin; Duman, Serhat; Bingol, OkanEnergy hub receives various energy carriers such as gas, electricity, and heat in its input and then converts them into required demands such as gas, cool, heat, compressed air, and electricity. The energy hub economic dispatch problem is a non-smooth, high-dimension, non-convex, and non-differential problem, it should be solved subject to equality and inequality constraints. In this study, symbiotic organisms search algorithm is carried out for energy hub economic dispatch problem to minimize the energy cost of the system. In an attempt to show the efficiency of the proposed algorithm, an energy hub system, which has 7 hubs and 17 energy production units, has been used. Simulation results of the symbiotic organisms search algorithm have been compared with some heuristic algorithms to show the ability of the proposed algorithm.Öğe Fitness-Distance-Constraint (FDC) based guide selection method for constrained optimization problems(Elsevier, 2023) Ozkaya, Burcin; Kahraman, Hamdi Tolga; Duman, Serhat; Guvenc, UgurIn the optimization of constrained type problems, the main difficulty is the elimination of the constraint violations in the evolutionary search process. Evolutionary algorithms are designed by default according to the requirements of unconstrained and continuous global optimization problems. Since there are no constraint functions in these type of problems, the constraint violations are not considered in the design of the guiding mechanism of evolutionary algorithms. In this study, two new methods were introduced to redesign the evolutionary algorithms in accordance with the requirements of constrained optimization problems. These were (i) constraint space-based, called Fitness-Distance -Constraint (FDC), selection method and (ii) dynamic guiding mechanism. Firstly, thanks to the FDC guide selection method, the constraint violation values of the individuals in the population were converted into score values and the individuals who increase the diversity in the search process were selected as guide. On the other hand, in dynamic guiding mechanism, the FDC method was applied in case of constraint violation, otherwise the default guide selection method was used The proposed methods were used to redesign the guiding mechanism of adaptive guided differential evolution (AGDE), a current evolutionary algorithm, and the FDC-AGDE algorithm was designed. The performance of the FDC-AGDE was tested on eleven different constrained real-world optimization problems. The results of the FDC-AGDE and AGDE were evaluated using the Friedman and Wilcoxon test methods. According to Wilcoxon pairwise results, the FDC-AGDE showed better performance than the AGDE in nine of the eleven problems and equal performance in two of the eleven problems. Moreover, the proposed algorithm was compared with the competitive and up-to-date MHS algorithms in terms of the results of Friedman test, Wilcoxon test, feasibility rate, and success rate. According to Friedman test results, the first three algorithms were the FDC-AGDE, LSHADE-SPACMA, and AGDE algorithms with the score of 2.69, 4.05, and 4.34, respectively. According to the mean values of the success rates obtained from the eleven problems, the FDC-AGDE, LSHADE-SPACMA, and AGDE algorithms ranked in the first three with the success rates of 67%, 48% and 28%, respectively. Consequently, the FDC-AGDE algorithm showed a superior performance comparing with the competing MHS algorithms. According to the results, it is expected that the proposed methods will be widely used in the constrained optimization problems in the future.& COPY; 2023 Elsevier B.V. All rights reserved.Öğe Optimal solution of the combined heat and power economic dispatch problem by adaptive fitness-distance balance based artificial rabbits optimization algorithm(Pergamon-Elsevier Science Ltd, 2024) Ozkaya, Burcin; Duman, Serhat; Kahraman, Hamdi Tolga; Guvenc, UgurCombined heat and power economic dispatch (CHPED) problem is one of the most widely handled, optimization problem by researchers in modern power systems. CHPED problem is a complicated, non-continuous, and nonconvex optimization problem due to the constraints. Moreover, considering the valve-point loading effect (VPLE), transmission losses (TLs), and prohibited operating zones (POZs) of power-only units as constraints, the complexity of CHPED problem increases. Therefore, a powerful optimization algorithm needs to be introduced to find global solution that meets all constraints. In this paper, a novel adaptive fitness-distance balance based artificial rabbits optimization (AFDB-ARO) is developed to solve CHPED problems. AFDB-based guiding mechanism was implemented to enhance the exploration capability of ARO and to strengthen exploitation-exploration balance. A comprehensive experimental study was realized to prove the performance of the proposed algorithm on the CHPED and benchmark problems. In experimental study between AFDB-ARO variants and ARO on 40 benchmark problems, according to Wilcoxon analysis results, all AFDB-ARO variants outperformed the base ARO, and the best AFDB-ARO variant won victory in 20 of 40 problem and achieved similar results in other 20 problem. In other experimental study, AFDB-ARO algorithm was implemented on the CHPED systems with 4-, 5-, 7-, 24-, 48-, 96-, and 192-units, and fifteen case studies were considered using these systems, VPLE, TLs, and POZs. One of the important points of this study was that POZs were considered for the first time in 96-and 192 -units system. The results show that AFDB-ARO achieved the best optimal solution in ten of fifteen cases, was same in one case, and obtained almost same results in four cases compared to the literature. Moreover, the stability of the AFDB-ARO and base ARO algorithms in solving the CHPED problem were tested by performing stability analysis. While the mean success rate, mean iteration number, and mean search time were obtained 87.62%, 353.63, and 2.91 sec of AFDB-ARO, respectively, ARO managed to find the optimal solution in two cases. Thus, the superior performance of AFDB-ARO algorithm is confirmed by experimental studies and analysis against ARO algorithm. The source codes of the AFDB-ARO algorithm (proposed method) can be accessed at this link: https://www.mathworks.com/matlabcentral/fileexchange/136846-afdb-aro-an-improved-aro-algorithm-for-optimization-problem.