Yazar "Kulac, Semsettin" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Climate Change Effect on Potential Distribution of Anatolian Chestnut (Castanea sativa Mill.) in the Upcoming Century in Turkiye(Aves, 2023) Cobanoglu, Hatice; Canturk, Ugur; Koc, Ismail; Kulac, Semsettin; Sevik, HakanClimate change, which is effective on a global scale, affects almost all living creatures and ecosystems directly or indirectly. Forests are at the top of the ecosystems that are predicted to be affected more by climate. This study intended to determine how the growth regions of the Anatolian chestnut in Turkiye belong to one of the utmost vital forest tree species, which will be affected by climate change. Within the study scope, suitable areas for the growth of the species in 2040, 2060, 2080, and 2100 were determined under different scenario models [intermediate (shared socio-economic pathways 245) and most extreme (shared socio-economic pathway 585)] and compared with the natural distribution areas of today (the year of 2020). As a result of the study, it is predicted that the suitable distribution areas for Anatolian chestnut cultivation will decrease significantly, especially after 2060-2080, and even disappear entirely by 2080, according to the extreme scenarios. Even with the best scenario (shared socio-economic pathway 245), it is projected that the suitable growth regions for Anatolian chestnuts will decrease to one-fifth of today's levels in 2100. It may be recommended to create mixed forests with better-adapted chestnut varieties or origins for future conditions due to being more resilient to various environmental stress factors. In addition, considering the future projections, new chestnut plantations should be established in suitable areas for chestnut production.Öğe The effects of climate change scenarios on Tilia ssp. in Turkey(Springer, 2021) Canturk, Ugur; Kulac, SemsettinGlobal climate change will cause significant changes in climate parameters, especially temperature increases and changes in precipitation regimes worldwide. Since the life of living things is directly related to climate parameters, this process will inevitably affect all living things. The plants will be the most affected living things from this process because they do not have an effective movement and migration mechanism. Therefore, global climate change will cause significant species and population losses in plants. To minimize the potential loss of species and populations, it is necessary to predetermine the potential changes in species' distribution areas and take necessary actions. Therefore, this study was aimed to determine the distribution areas of three Tilia species (Tilia tomentosa, Tilia cordata, and Tilia platyphyllos), which have economic, ecologic, and social value and show the local distribution in Turkey and to determine how they will be affected by global climate change. Within this scope, nineteen bioclimatic variables, Emberger climate classification, aspect, and topographic altitude variable were used in the modeling process. By modeling the scenarios SSP 245 and SSP 585, the projections were made for 2040, 2060, 2080, and 2100 regarding the areas suitable for the growth of these species and how these areas will change compared to their current situation. The results suggest that the distribution areas of all three Tilia species will change due to climate change, and the area of loss will be 43.5 km(2) (4%) for T. tomentosa, 9953.6 km(2) (15%) for T. platyphyllos, and 448.0 km(2) (19%) for T. cordata. Moreover, a more important point here is that increases and decreases will be observed in their distribution areas, and these changes will occur in a short process and at significant levels. In this case, the migration mechanism that these species will require must be provided by humans.Öğe Proof of concept to characterize historical heavy-metal concentrations in atmosphere in North Turkey: determining the variations of Ni, Co, and Mn concentrations in 180-year-old Corylus colurna L. (Turkish hazelnut) annual rings(Springer Heidelberg, 2023) Key, Kubra; Kulac, Semsettin; Koc, Ismail; Sevik, HakanHeavy metals (HMs) are among the pollutants posing a significant threat to human, animal, and environmental health. Therefore, monitoring HM concentration changes, especially in the air, is crucial. This study used Corylus colurna L. (Turkish hazelnut) annual tree rings cut in 2020, and it was intended to define the 180-year variations in concentrations of Ni (nickel), Co (cobalt), and Mn (manganese) that are among the most harmful HMs. This study analyzed HMs concentrations in the wood, outer and inner bark in the north, south, east, and west directions and the seasonal variations in HM concentrations in tree rings. It was determined that, for all the three elements, the wood and barks significantly differed (P < 0.001) only in the north side, and the concentrations in wood were much lower than in the bark. The maximum concentrations were usually observed in annual rings in the west and south directions. The changes by both organ and direction can be related to the iron and steel factory and the highway, which are defined as HM sources. The results also revealed that the relocation of Co, Ni, and Mn in the wood of C. colurna tree remained at a limited level. The results suggest that C. colurna annual tree rings are very useful in tracking the variation of Ni, Co, and Mn concentrations.Öğe Some physiological and biochemical changes In oak trees after fire(Univ Federal Lavras-Ufla, 2023) Kabaoglu, Ali; Kulac, Semsettin; Baysal, Ismail; Ozbayram, Ali Kemal; Akbulut, Suleyman; Ozturk, NurayBackground: Forest fires are considered integral parts of many forest ecosystems despite being a disaster influencing the forest ecosystem dynamics significantly. A fire that occurred within the borders of Duzce-Konuralp State Forest Enterprise affected 16 ha of oak forest. The present study aimed to investigate the physiological and biochemical changes in two oak species (Quercus pubescens and Q. cerris) at post-fire period. For this purpose, seasonal shoot and leaf samples were collected from 15 trees (5 trees from high and low fire intensity and control groups) for each oak species. The samples were subjected to xylem, water potential, and stomatal conductivity analysis in the field and carbohydrate concentration and proline analyses in the laboratory. Results: It was found that leaf surface area decreased, and the root-leaf water connection was broken depending on the intensity of the fire. As the fire severity increased, water potential and stomatal conductivity of trees increased; proline and carbohydrate concentration amounts decreased. Q. pubescens had lower water potential and stomatal conductivity than Q. cerris but higher proline and carbohydrate concentration amounts. Conclusion: Q. pubescens was more resistant to drought stress during the post-fire season than Q. cerris from the aspect of physiological and biochemical characteristics.