Yazar "Kucukkulahli, Enver" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A transfer learning-based deep learning approach for automated COVID-19 diagnosis with audio data(Tubitak Scientific & Technical Research Council Turkey, 2021) Akgun, Devrim; Kabakus, Abdullah Talha; Senturk, Zehra Karapinar; Senturk, Arafat; Kucukkulahli, EnverThe COVID-19 pandemic has caused millions of deaths and changed daily life globally. Countries have declared a half or full lockdown to prevent the spread of COVID-19. According to medical doctors, as many people as possible should be tested to identify their status, and corresponding actions then should be taken for COVID-19 positive cases. Despite the clear necessity of these medical tests, many countries are still struggling to acquire them. This fact clearly indicates the necessity of a large-scale, cheap, fast, and accurate alternative prescreening tool that can be used for the diagnosis of COVID-19 while waiting for the medical tests. To this end, a novel end-to-end transfer learning-based deep learning approach that uses only a given cough sound for the diagnosis of COVID-19 was proposed in this study. The proposed models employed various pretrained deep neural networks, namely, VGG19, ResNet50V2, DenseNet121, and MobileNet, via the transfer learning technique. Then, these models were evaluated on a gold standard dataset, namely, Cambridge data. According to the experimental result, the proposed model, which employed the MobileNet via the transfer learning technique, provided the best accuracy, 86.42%, and outperformed the state-of-the-art. Thus, the proposed model has the potential to provide automated COVID-19 diagnosis in an easily applicable and fast yet accurate way.Öğe A User-Centric Smart Library System: IoT-Driven Environmental Monitoring and ML-Based Optimization with Future Fog-Cloud Architecture(Mdpi, 2025) Mammadov, Sarkan; Kucukkulahli, EnverUniversity libraries are essential academic spaces, yet existing smart systems often overlook user perception in environmental optimization. A key challenge is the lack of adaptive frameworks balancing objective sensor data with subjective user experience. This study introduces an Internet of Things (IoT)-powered framework integrating real-time sensor data, image-based occupancy tracking, and user feedback to enhance study conditions via machine learning (ML). Unlike prior works, our system fuses objective measurements and subjective input for personalized assessment. Environmental factors-including air quality, sound, temperature, humidity, and lighting-were monitored using microcontrollers and image processing. User feedback was collected via surveys and incorporated into models trained using Logistic Regression, Decision Trees, Random Forest, Support Vector Machine (SVM), K-Nearest Neighbors (KNNs), Extreme Gradient Boosting (XGBoost), and Naive Bayes. KNNs achieved the highest F1 score (99.04%), validating the hybrid approach. A user interface analyzes environmental factors, identifying primary contributors to suboptimal conditions. A scalable fog-cloud architecture distributes computation between edge devices (fog) and cloud servers, optimizing resource management. Beyond libraries, the framework extends to other smart workspaces. By integrating the IoT, ML, and user-driven optimization, this study presents an adaptive decision support system, transforming libraries into intelligent, user-responsive environments.