Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Kucuk, S." seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Creep behavior of human knee joint determined with high-speed biplanar video-radiography and finite element simulation
    (Elsevier, 2022) Uzuner, S.; Kuntze, G.; Li, L. P.; Ronsky, J. L.; Kucuk, S.
    Creep and relaxation of knee cartilage and meniscus have been extensively studied at the tissue level with constitutive laws well established. At the joint level, however, both experimental and model studies have been focused on either elastic or kinematic responses of the knee, where the time-dependent response is typically neglected for simplicity. The objectives of this study were to quantify the in-vivo creep behavior of human knee joints produced by the cartilaginous tissues and to use the relevant data to validate a previously proposed poromechanical model. Two participants with no history of leg injury volunteered for 3T magnetic resonance imaging (MRI) of their unloaded right knees and for biplanar video-radiography (BVR) of the same knees during standing on an instrumented treadmill for 10 min. Approximately 550 temporal data points were obtained for the in-vivo displacement of the right femur relative to the tibia of the knee. Models of the bones and soft tissues were derived from the MRI. The bone models were used to reconstruct the 3D bone kinematics measured using BVR. Ground reaction forces were simultaneously recorded for the right leg, which were used as input for the subjectspecific finite element knee models. Cartilaginous tissues were modeled as fluid-saturated fibril-reinforced materials. In-vivo creep of the knee was experimentally observed for both participants, i.e., the joint displacement increased with time while the reaction forces at the foot were approximately constant. The creep displacements obtained from the finite element models compared well with the experimental data when the tissue properties were calibrated (Pearson correlation coefficient = 0.99). The results showed the capacity of the poromechanical knee model to capture the creep response of the joint. The combined experimental and model study may be used to understand the fluid-pressure load support and contact mechanics of the joint using material properties calibrated from the displacement data, which enhance the fidelity of model results.

| Düzce Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Düzce Üniversitesi, Kütüphane ve Dokümantasyon Daire Başkanlığı, Düzce, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim