Yazar "Kocum, Ismail Cengiz" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe GRGDS-conjugated and curcumin-loaded magnetic polymeric nanoparticles for the hyperthermia treatment of glioblastoma cells(Elsevier, 2021) Senturk, Fatih; Cakmak, Soner; Kocum, Ismail Cengiz; Gumusderelioglu, Menemse; Ozturk, Goknur GulerThermally responsive and ligand-mediated drug delivery systems have the potential to improve the treatment of brain tumors, especially, most lethal one, glioblastoma multiform (GBM). Magnetic nanoparticle-mediated hyperthermia becomes one of the most promising alternative therapy for GBM treatment in cases where localized heating and targeted delivery of a therapeutic drug can be achieved on the tumor site. In this study, it is aimed to increase the therapeutic efficiency of multi-functionalized nanoparticles (NPs) in combination with radiofrequency hyperthermia (RF-HT) on GBM cells. For this purpose, firstly, a low-cost and portable home-built RFHT system suitable for in vitro/in vivo studies was successfully implemented and tested at 13.56 MHz frequency with power up to approximately 400 W. Subsequently, the highly monodispersed superparamagnetic iron oxide nanoparticles (SPIONs), which could interact with the RF magnetic field, were synthesized with the mean particle size of 5.6 +/- 0.9 nm. The obtained SPIONs were coated with poly (lactic-co-glycolic acid)-poly (ethylene glycol) di-block copolymer (PLGA-b-PEG). Most of the SPIONs were uniformly distributed in such a well-defined spherical-shaped polymeric NP. Moreover, curcumin (Cur), a potential agent for GBM treatment, was loaded into the magnetic polymeric nanoparticles (m-PNPs) with a loading capacity of 8% (w/w, Cur/NPs) and a mean diameter of Cur-loaded m-PNPs (Cur-m-PNPs) was 142 +/- 70 nm. To increase cellular uptake and targeting ability of NPs, glycine-arginine-glycine-aspartic acid-serine (GRGDS) peptide was immobilized on the Cur-m-PNPs and the amount of GRGDS was detected as 37 mu g/mg NPs. In vitro cytotoxicity studies revealed that the presence of GRGDS on Cur-m-PNPs (GRGDS-Cur-m-PNPs) improved the cytotoxic efficiency of Cur-m-PNPs by 6-fold in GBM-cells for all incubation times (24, 48 and 72 h). Furthermore, NPs with RF treatment exhibited higher antitumor activity than that of NPs without RF on GBM cells. This result may be attributed to the thermal (SPIONs) or non thermal (cellular membrane) effects or both of them on cells. Overall, this study showed that RF-HT in combination with GRGDS-Cur-m-PNPs could provide a feasible approach to improve GBM treatment.Öğe A quartz crystal microbalance (QCM)-based easy setup device for real-time mass change detection under high-power RF plasma(Aip Publishing, 2023) Senturk, Fatih; Kocum, Ismail Cengiz; Seyitoglu, Melek Ilayda; Aksan, Eda SevvalSensing technologies serve a crucial role in monitoring and testing surface properties in biosensors, thin films, and many other industries. Plasma treatments are routinely used in most of these technologies to modify the surfaces of materials. However, due to the high radio frequency (RF) noise in plasma processes, real-time surface tracking is still rather difficult. In this study, we aim to construct an easy-to-set up mass change detection system capable of operating under RF plasma conditions. For this purpose, we have presented a novel technique that utilizes the quartz crystal microbalance sensor to detect mass changes in different plasma environments. The constructed device was then tested under 13.56 MHz, 100 W plasma atmosphere. The results showed that the resonance frequency of a crystal was successfully measured with 1.0 Hz resolution under the impact of plasma-induced high power of RF noise. Moreover, as a preliminary study, we used ethylenediamine (EDA) to track changes in resonance frequency under plasma conditions and observed noise-free signals in frequency-voltage curves. Furthermore, the system's sensitivity was found to be 3.8 ng/Hz, with a test molecule (EDA) deposition of about 380 ng in the RF plasma atmosphere. Overall, this study focused on creating a relatively new approach for detecting the real-time mass change in a strong RF environment, which we believe could be an improved and easy-to-set up technique for plasma-based processes such as surface coating, etching, and activation.