Yazar "Khandal, Sanjeevakumar Veerasangappa" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Hydrogen and dual fuel mode performing in engine with different combustion chamber shapes: Modelling and analysis using RSM-ANN technique(Elsevier Ltd, 2022) Khandal, Sanjeevakumar Veerasangappa; Razak, A.; Veza, I.; Afzal, Asif; Alwetaishi, Mamdooh; Shaik, S.; Ağbulut, ÜmitThis study investigates the impacts of hydrogen (H2) induction along with injected liquid honne biodiesel (BHO)/uppage biodiesel (BUO) as secondary pilot fuel in diesel engine. The effects of compression ratio (CR), hydrogen fuel flow rate (HFR) and different combustion chamber shapes in dual fuel (DF) mode were investigated. In the first phase of experiments, the effects of three different CR (15.5, 16.5, and 17.5) on engine efficacy and emission were presented. In the second phase, the effects of three HFR (0.1, 0.17, and 0.24 kg/h) on engine efficacy and emission, as well as the maximum possible HFR were reported. In the last phase, performance with different combustion chambers i.e., Hemispherical Combustion Chamber (HCC), Toroidal Reentrant Combustion Chamber (TRCC), and Toroidal Combustion Chamber (TCC) at maximum possible CR and HFR was highlighted. The study revealed that for knock free operation of the DF engine, the highest probable HFR was 0.24 kg/h at a CR of 17.5, fuel IT of 27obefore top dead center (bTDC) and injector opening pressure (IOP) of 250 bar. The toroidal re-entrant combustion chamber (TRCC) shape yielded 8%–12% better brake thermal efficiency (BTE) with lower emissions but 20–29% higher oxides of nitrogen (NOx) at 80% load in DF mode as contrasted to the single CI mode. Both peak pressure (PP) and heat release rate (HRR) were 12–15% higher. Response surface methodology (RSM) was used to design the experiments and to carry the optimization process. Artificial Neural Network (ANN) was used to forecast the performance and emission behaviors of the test engine. The findings demonstrated that RSM and ANN were excellent modelling techniques with good accuracy. In addition, ANN's prediction performance (R2 = 0.975 for BTE) was somewhat better than RSM's (R2 = 0.974 for BTE). Both the techniques were found to be successful in terms of agreement with experimental findings with ratios varying from 95% to 98% respectively. The prediction of BTE and NOx was also carried using different machine learning algorithms. It can be seen that R2 value for these models were slightly lower than ANN and RSM models indicating good predicting capability of ANN modelling. © 2022 Hydrogen Energy Publications LLCÖğe Influences of hydrogen addition from different dual-fuel modes on engine behaviors(Wiley, 2022) Khandal, Sanjeevakumar Veerasangappa; Ağbulut, Ümit; Afzal, Asif; Sharifpur, Mohsen; Abdul Razak, Kaladgi; Khalilpoor, NimaCompression ignition (CI) engines have good performance but more exhaust emissions. Dual fuel (DF) engines have better performance and lower emissions compared to CI mode. Also, the scarcity of fossil fuels made the researchers to find alternative fuels to power CI engines. Therefore, the present work aims to use hydrogen (H-2) and honne oil biodiesel (BHO) to investigate the performance of CI engines in DF mode. Also, it aims to compare the performance of CI engines in various DF modes, namely induction, manifold injection, and port injection. First, the CI engine was fuelled completely by diesel fuel and BHO. The data were gathered when the engine ran at a constant engine speed of 1500 rpm and at 80% load. Second, the CI engine was operated in various DF modes and data were generated. CI engine operation in DF mode was smooth with biodiesel and H-2. The brake thermal efficiency (BTE) of 32% and 31.1% was reported with diesel and biodiesel, respectively, for manifold injection due to low energy content and high viscosity of biodiesel. These values were higher than CI mode and other DF modes. Fuel substitution percentage for DF manifold injection was 60% and 57% with diesel and biodiesel, respectively. Smoke, hydrocarbon (HC), and carbon monoxide (CO) emissions were lower than conventional mode, but a reverse trend was observed for oxides of nitrogen (NOx) emissions. Heat release rate (HRR) and peak pressure (PP) were higher than conventional mode due to the fast combustion rate of hydrogen. The shortest ignition delay (ID) period was noticed for traditional diesel fuel, but it was longer for BHO biodiesel due to its higher viscosity and lower cetane number. On the contrary, the presence of hydrogen led to an increment in the combustion duration (CD) owing to the scarcity of oxygen in CD. Consequently, the paper clearly showed that the injection way of hydrogen plays a respectable role in the engine characteristics.