Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Karapinar Senturk, Zehra" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Machine Learning-Based Hand Gesture Recognition via EMG Data
    (Ediciones Univ Salamanca, 2021) Karapinar Senturk, Zehra; Bakay, Melahat Sevgul
    Gestures are one of the most important agents for human-computer interaction. They play a mediator role between human intention and the control of machines. Electromyography (EMG) pattern recognition has been studied for gesture recognition for years to control of prostheses and rehabilitation systems. EMG data gives information about the electrical activity related to muscles. It is obtained from the arm and helps to understand hand gestures. For this work, hand gesture data taken from UCI2019 EMG dataset obtained from myo Thalmic armband were classified with six different machine learning algorithms. Artificial Neural Network (ANN), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Naive Bayes (NB), Decision Tree (DT) and Random Forest (RF) methods were applied for comparison based on several performance metrics which are accuracy, precision, sensitivity, specificity, classification error, kappa, root mean squared error (RMSE) and correlation. The data belongs to seven hand gestures. 700 samples from 7 classes (100 samples per group) were used in the experiments. Splitting ratio in the classification was 0.8-0.2, i.e. 80% of the samples were used in training and 20% of data were used in the testing phase of the classifier. NB was found to be the best among other methods because of high accuracy. Classification accuracy varies between 97.52% to 100% for each gesture. Considering the results of the performance metrics, it can be said that this study recognizes and classifies seven hand gestures successfully in comparison with the literature. The proposed method can easily be used for human-machine interaction and smart device controlling like prosthesis, wheelchair, and smart entertainment applications.

| Düzce Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Düzce Üniversitesi, Kütüphane ve Dokümantasyon Daire Başkanlığı, Düzce, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim