Yazar "Karagoz, Mustafa" seçeneğine göre listele
Listeleniyor 1 - 7 / 7
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Energy, exergy, economic and sustainability assessments of a compression ignition diesel engine fueled with tire pyrolytic oil - diesel blends(Elsevier Sci Ltd, 2020) Karagoz, Mustafa; Uysal, Cuneyt; Agbulut, Umit; Saridemir, SuatEvery year, millions of tons of tire become unusable around the world and waste tire dumps threaten human health and the environment. Therefore, recycling of waste tires has attracted attention recently. In this study, energy, exergy, economic and sustainability analyses of a compression ignition diesel engine fueled with tire pyrolytic oil-diesel blends were performed and the results were compared with that of neat diesel. Tire pyrolytic oil was produced from waste tires with vacuum pyrolysis technique. Hydro-sulfuric acid treatment, vacuum distillation and oxidative desulfurization processes were applied to reduce emission values of tire pyrolytic oil. Tire pyrolytic oil was blended with neat diesel as 10 vol% (TPO10D90), 30 vol% (TPO30D70) and 50 vol% (TPO50D50). The test engine was single-cylinder, four-stroke, naturally aspirated, compression ignition diesel engine and the experiments were conducted for different test engine loads of 3 Nm, 6 Nm, 9 Nm and 12 Nm at constant crankshaft speed of 2000 rpm. The highest energy and exergy efficiencies were obtained for TPO10D90, while the lowest ones were obtained for neat diesel. At 12 Nm, the energy efficiency of test engine was obtained to be 26.89% for neat diesel and 28.15% for TPO10D90, while the exergy efficiency of test engine was found to be 25.19% for neat diesel and 26.36% for TPO10D90. The energy loss per capital investment cost was obtained to be 0.87 x 10(-4) kW/$ for TPO10D90 and 1.03 x 10(-4) kW/$ for neat diesel at 3Nm. At 12 Nm, the highest sustainability index was determined to be 1.358 for TPO10D90, while the lowest sustainability index was 1.337 for neat diesel. Results showed that TPO10D90 had better performance at each test engine load in terms of energy, exergy, economic and sustainability and the increase in tire pyrolytic oil content of blend made the results worse but better than neat diesel. As a conclusion, it can be said that tire pyrolytic oil production from waste tires is important fact from the viewpoint of both waste management and protection of fossil fuel resources depletion. (C) 2020 Elsevier Ltd. All rights reserved.Öğe Exergetic and exergoeconomic analyses of a CI engine fueled with diesel-biodiesel blends containing various metal-oxide nanoparticles(Pergamon-Elsevier Science Ltd, 2021) Karagoz, Mustafa; Uysal, Cuneyt; Agbulut, Umit; Saridemir, SuatComprehensive exergetic and exergoeconomic analyses of a single-cylinder, four-stroke, naturally aspirated compression ignition (CI) diesel engine were conducted in the present paper. Exergy-based sustainability indicators were also determined in the study. The test engine was fueled with diesel fuel (D100), %90 diesel+10% waste cooking oil methyl ester blend (D90B10), D90B10 with Al2O3 nanoparticle of 100 ppm (D90B10Al(2)O(3)), D90B10 with TiO2 nanoparticle of 100 ppm (D90B10TiO(2)), and D90B10 with SiO2 nanoparticle of 100 ppm (D90B10SiO(2)) nanofuels, separately. The tests were performed at a constant engine speed of 2000 rpm and at varying engine loads from 2.5 to 10 Nm with an increment of 2.5 Nm. As a result, the exergy efficiencies of the test engine for D90B10 and D90B10Al(2)O(3) were determined to be 25.57% and 28.12%, respectively. The lowest cost flow rate of crankshaft work was found to be 0.4247 US$/h at 2.5 Nm, 0.5154 US$/h at 5 Nm for D90B10Al(2)O(3), and 0.6029 US$/h at 7.5 Nm, 0.7253 US$/h at 10 Nm for D90B10SiO(2). At 10 Nm, the highest and lowest sustainability index values were determined to be 1.391 for D90B10Al(2)O(3) and 1.344 for D90B10, respectively. From the perspective of exergy and sustainability, D90B10Al(2)O(3) had the best results. Besides, from the perspective of exergoeconomics, D90B10Al(2)O(3) had the best results at lower engine loads. As a conclusion, it can be said that nanofuels showed better performances compared to neat diesel fuel and diesel-biodiesel blend in the terms of in terms of exergy, exergoeconomics, and sustainability analyzes. Considering all analyses together, it is noticed that Al2O3-doped nanofuel is the best test fuel for this study, and then it is followed by SiO2 and TiO2-doped nanofuels, respectively. (C) 2020 Elsevier Ltd. All rights reserved.Öğe Exergetic and exergoeconomic assessments of a diesel engine operating on dual-fuel mode with biogas and diesel fuel containing boron nitride nanoparticles(Springer, 2024) Uysal, Cuneyt; Agbulut, Umit; Topal, Halil Ibrahim; Karagoz, Mustafa; Polat, Fikret; Saridemir, SuatThis study investigates the exergetic and exergoeconomic analyses of a diesel engine operated on dual-fuel mode with fuelled both diesel fuel-boron nitride nanofuel and biogas purchased commercially. The experiments were performed for diesel fuel, diesel + 100 ppm boron nitride nanoparticle, diesel + 100 ppm boron nitride nanoparticle + 0.5 L min-1 biogas, diesel + 100 ppm boron nitride nanoparticle + 1.0 L min-1 biogas and diesel + 100 ppm boron nitride nanoparticle + 2.0 L min-1 biogas at various engine loads (2.5 Nm, 5.0 Nm, 7.5 Nm, and 10.0 Nm) and fixed crankshaft speed of 1500 rpm. The obtained experimental data were used to realize exergetic and exergoeconomic analyses. Among the fuels considered in this study, diesel + 100 ppm boron nitride nanoparticle nanofuel had the best exergetic and exergoeconomic results. As a result, at engine load of 10 Nm, the exergy efficiency of test engine and specific exergy cost of crankshaft work were obtained to be 29.12% and 124.86 US$ GJ-1 for diesel + 100 ppm boron nitride nanoparticle nanofuel, respectively. These values were 27.35% and 125.19 US$ GJ-1 for diesel fuel, 25.50% and 141.92 US$ GJ-1 for diesel + 100 ppm boron nitride nanoparticle + 0.5 L min-1 biogas, 23.10% and 156.33 US$ GJ-1 for diesel + 100 ppm boron nitride nanoparticle + 1.0 L min-1 biogas, and 21.09% and 171.92 US$ GJ-1 for diesel + 100 ppm boron nitride nanoparticle + 2.0 L min-1 biogas, respectively. It is clear that biogas addition to combustion made worse the exergetic and exergoeconomic performances of test engine. As a conclusion, it can be said that diesel + 100 ppm boron nitride nanoparticle nanofuel can be used as alternative fuel to D100 in terms of exergy and exergoeconomics.Öğe An experimental assessment of combustion and performance characteristics of a spark ignition engine fueled with co-fermentation biogas and gasoline dual fuel(Sage Publications Ltd, 2021) Agbulut, Umit; Aydin, Mustafa; Karagoz, Mustafa; Deniz, Emrah; Ciftci, BurakNatural gas, biogas and alcohols are alternative fuels for spark ignition engines which can be used for reducing exhaust emissions and improving performance metrics. At the first stage of the study, a pilot scale biogas system was built, and biogas was produced from a mixture of manure and water called slurry, consisting of 40% cattle manure, 35% water, 17% whey and 8% poultry manure by co-fermentation method. Scrubbing and desulfurization were applied to remove the harmful gasses (CO2, H2S) from the produced biogas in two stages. In the end of the purification process, biogas with a CH4 content of 51%, 57% and 87% was produced. In the second stage, these biogas fuels were used in an SI engine, and their impacts on performance and combustion characteristics were investigated experimentally. A 4-cylinder, 4-stroke, water cooled SI engine with an 11:1 compression ratio was used in the experiments. Tests were conducted at various loads and constant speed. Results showed that daily amount of mean biogas production has reached 1.6 m(3)/day and biogas methane content has reached 72%. In engine tests, as the methane ratio in biogas increases, cylinder pressure and exhaust temperature values increase and brake specific fuel consumption decreases.Öğe Experimental investigation of fusel oil (isoamyl alcohol) and diesel blends in a CI engine(Elsevier Sci Ltd, 2020) Agbulut, Umit; Saridemir, Suat; Karagoz, MustafaThe present paper details an experimental investigation of the combustion behaviours, exhaust emission and performance characteristics of a single-cylinder diesel engine fueled with fusel oil-diesel blends of volumetrically 10%, 15% and 20% into neat diesel fuel (F0) separately. Under steady-state conditions, the tests were performed at constant engine speed (2000 rpm), and four different engine loads (2.5, 5, 7.5 and 10 Nm). The results showed that CO and NOx emissions significantly reduced down to 52% and 20%, respectively with an increasing percentage of the fusel oil in the fusel oil-diesel blends. However, HC gradually increased up to 40% with the addition of fusel oil. With respect to the performance of the engine, the lowest BSFC and the highest BTE were seen in F0 test fuel owing to the higher heating value of F0. On the other hand, duration in ignition delay (ID) of fusel oil-diesel blends was longer than that of F0 due to the lower cetane number of the fusel oil. The maximum in-cylinder pressure (CPmax) and maximum heat release rates (HRRmax) of fusel oil containing fuels is higher in comparison with diesel fuel owing to the longer ID and oxygen atoms of excessive fusel oil. The combustion characteristics of fusel oil-diesel blends closely followed those of neat diesel fuel.Öğe Impact of various metal-oxide based nanoparticles and biodiesel blends on the combustion, performance, emission, vibration and noise characteristics of a CI engine(Elsevier Sci Ltd, 2020) Agbulut, Umit; Karagoz, Mustafa; Saridemir, Suat; Ozturk, AhmetWith the burning of 1 L of diesel fuel, approximately 3 kg of greenhouse gas is released into the atmosphere. Therefore, it is of great importance to reduce emissions with some additives in diesel engines. This study deals with the impacts of blends of waste cooking oil methyl ester and various metal-oxide based nanoparticles on the emission, combustion, performance, vibration and noise characteristics of a single-cylinder diesel engine. The test engine was loaded at different engine loads of 2.5, 5, 7.5 and 10 Nm and a constant engine speed of 2000 rpm. In this investigation, various fuels [called as reference diesel (D100), 10 vol% of waste cooking oil methyl ester (B10), and finally the mass fractions of 100 ppm aluminium oxide (B10Al(2)O(3)), titanium oxide (B10TiO(2)) and silicon oxide (B10SiO(2)) into the B10, separately] were tested. The addition of metal-oxide based nanoparticles has firstly increased the viscosity, cetane number, and heating value of biodiesel. Higher oxygen atoms in biodiesel-nanoparticles blends have improved the quality of the combustion process. Higher peak point in CPmax and HRRmax could be reached in these nano fuels due to their lower cetane numbers than that of D100. CO, HC and NOx emissions were significantly reduced with the blending of nanoparticles and biodiesel in comparison with those of D100. The addition of nanoparticles highly improved engine performance. B10 had the lowest thermal efficiency due to its heating value, but its efficiency was converted to the highest one with the addition of nanoparticle. In conclusion, this study is suggesting that the addition of metal-oxide based nanoparticles into biodiesel blends can give better results than using biodiesel alone for diesel engines.Öğe Waste to energy: Production of waste tire pyrolysis oil and comprehensive analysis of its usability in diesel engines(Elsevier Sci Ltd, 2020) Karagoz, Mustafa; Agbulut, Umit; Saridemir, SuatIn the present paper, the waste vehicle tire chips were pyrolyzed to be achieved their liquid oil forms and then they were blended at different percentages (0%, 10%, 30% and 50% by volume) into neat diesel fuel (DF). Tests were conducted on a single-cylinder diesel engine at four different engine loads (3, 6, 9 and 12 Nm) under a constant engine speed of 2000 rpm. Then the performance (BSFC, BTE), combustion, emission (CO, NOx, and HC), vibration and noise characteristics to observe the influence of the addition of waste tire pyrolysis liquids (TPL) within diesel fuel were investigated experimentally. Since the heating value of TPL was lower than that of diesel fuel, BSFC gradually increased and BTE reduced with increase in TPL content of the TPL-diesel blend at all engine loads. On the other hand, it is seen that the ignition delay of the TPL-diesel blends is longer than that of DF owing to the low cetane number of TPL. The peak points of the maximum heat release rate (HRRmax) and maximum in-cylinder pressure (CPmax) were, therefore, higher in TPL-diesel blends. Additionally, both higher HRR and CP triggered to increase both vibration and noise levels in these fuels. Besides, the carbon and oxygen content of TPL produced have partially close to neat diesel fuel but hydrogen content is higher in diesel fuel. That is why a significant variation on CO was not observed among test fuels. However, NOx emission slightly increased and HC emission highly and gradually reduced with increase in TPL content of the blends. In conclusion, this paper highlights that usage of TPL can alternatively be blended into diesel fuel (up to 50%) without any modifications and presented promising results for the solution to both the waste management and depleting fossil fuels.