Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Karabudak, R." seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Investigation of the Effects of age and Gender Differences on Brain Activity Analysing Complexity Measures of Sleep EEG Signals by Machine Learning
    (Institute of Electrical and Electronics Engineers Inc., 2020) Akkaya, E.; Karabudak, R.; Tosun, P. D.
    Machine learning applications are used in the health sector, and as a result, many easy and applicable methods have been developed for analysis, interpretation, diagnosis and treatment. With the use of these applications in the sleep area, progress is expected in the diagnosis and treatment of sleep disorders, which is a major problem for millions of people. In order to achieve this goal, understanding the effects of age and gender factors that significantly affect brain activity during sleep, is important for all studies to be conducted. In this study, Lempel-Ziv complexity measures calculated from all-night sleep electroencephalogram signals were used in age and gender classification. Artificial Neural Networks (ANN) model has been used as the basic classifier in the studies. For ANN classifier, firstly, a network model was coded using MATLAB, and then a network model was designed using MATLAB nntool application for performance comparison. With the Classification Learner application, other classifier models were trained and their performances were examined, Decision Trees and Ensemble Classifiers showing the most successful results were included in the study. At the end of the study, age classification with 54.5% accuracy and general gender classification with 66.7% accuracy were achieved with the ANN model created using the MATLAB. © 2020 IEEE.

| Düzce Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Düzce Üniversitesi, Kütüphane ve Dokümantasyon Daire Başkanlığı, Düzce, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim