Yazar "Kanbak, G." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe The effects of L-NAME on DU145 human prostate cancer cell line: A cytotoxicity-based study(Sage Publications Ltd, 2020) Kacar, S.; Kar, F.; Hacioglu, C.; Kanbak, G.; Sahinturk, VOf all cancer types, prostate cancer is the second most common one with an age-standardized incidence rate of 29.3 per 100,000 men worldwide. Nitric oxide (NO) is both a radical and versatile messenger molecule involved in many physiological activities. NO was documented to be highly secreted and utilized by cancer cells. N omega-nitro-l-arginine methyl ester (L-NAME) is utilized for inhibiting NO synthase. Its worst long-term side effect is reported to be hypertension, hence less cytotoxic than chemotherapeutic agents. Herein, we carried out a cytotoxicity study on how different doses of L-NAME affect DU145 human prostate cancer cells. First, toxic doses of L-NAME were determined. Then, while antioxidant capacity was determined by glutathione and total antioxidant status, oxidative stress was evaluated by quantifying malondialdehyde, NO, and total oxidant status levels. Inflammatory effects of L-NAME were investigated by measuring tumor necrosis factor-alpha and interleukin-6 (IL-6) levels. Apoptotic effects of L-NAME were evaluated by measuring cytochrome C somatic and caspase 3 levels and by staining Bax protein. Finally, morphological analysis was performed. IC50 of L-NAME against DU145 cells was 12.2 mM. In L-NAME-treated DU145 cells, a dose-dependent increase in oxidative stress, inflammatory, and apoptotic marker proteins and decrease in antioxidant capacity were observed. While at the moderate dose of L-NAME, apoptotic changes were commonly observed, at higher doses, vacuolated and swollen cells were also recorded. We believe that the present study will encourage future studies by providing insights about dose and effects of L-NAME.Öğe Hexagonal boron nitride nanoparticles trigger oxidative stress by modulating thiol/disulfide homeostasis(Sage Publications Ltd, 2021) Kar, F.; Sogut, I; Hacioglu, C.; Goncu, Y.; Senturk, H.; Senat, A.; Kanbak, G.Background: Hexagonal boron nitride nanoparticles (hBN NPs) are encouraging nanomaterials with unique chemical properties in medicine and biomedical fields. Until now, the optimal hBN NP's dosage and biochemical mechanism that can be used for in vivo systems has not been fully revealed. The main aim of this article is to reveal characteristics, serum and tissue interactions and any acute cytotoxic effect of different dose of hBN NPs for the first time. Methods: hBN NPs at concentrations varying between 50-3200 mu g/kg was administered by intravenous injection to Wistar albino rats (n = 80) divided into seven dosage and control groups. Blood and tissue samples were taken after 24 hours. Results: Our findings suggested that higher doses hBN NPs caused oxidative stress on the serum of rats dose-dependently. However, hBN NPs did not affect thiol/disulfide homeostasis on kidney, liver, spleen, pancreas and heart tissue of rats. Furthermore, hBN NPs increased serum disulfide formation by disrupting the thiol/disulfide balance in rats. Also, LOOH and MPO levels increased at high doses, while CAT levels decreased statistically. Conclusion: The results revealed that hBN NPs induce oxidative stress in a dose-dependent manner by modulating thiol/disulfide homeostasis in rats at higher concentrations