Yazar "Hazman, Ömer" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Preparation of Novel Composites of Polyvinyl Alcohol Containing Hesperidin Loaded ZnO Nanoparticles and Determination of Their Biological and Thermal Properties(Springer, 2023) Erol, İbrahim; Hazman, Ömer; Aksu, MecitHesperidin (HSP) is considered to be the most effective antimicrobial agent against SARS-CoV2 virus. The HSP was loaded onto ZnO nanoparticles that were successfully incorporated, via the hydrothermal method, into polyvinyl alcohol (PVA) for use as food packaging material. The hydrothermal method enabled the bioactive ZnO-HSP to be homogeneously dispersed in the PVA, which significantly increased the thermal stability of the matrix, while decreasing the softening temperature. The water holding capacity and water solubility of the obtained nanocomposites was reduced compared to the PVA. Finally, the ZnO-HSP antimicrobial agent contributed important antibacterial properties to the PVA and increased its antioxidant capacity against Staphylococcus aureus and Escherichia coli pathogens. In addition, the nanocomposites had no cytotoxic/proliferative effects on cancer cells. All results showed promise that the PVA/ZnO-HSP nanocomposites would be an excellent alternative for food packaging applications.Öğe Synergistic effect of ZnO nanoparticles and hesperidin on the antibacterial properties of chitosan(Taylor & Francis Ltd, 2022) Erol, İbrahim; Hazman, Ömer; Aksu, Mecit; Bulut, EmineIn this study, hesperidin (HSP) biological agent, which has strong antioxidant properties, was successfully transferred to ZnO nanoparticles, which were first synthesized by the hydrothermal method. Then, chitosan (CS)/ZnO-HSP nanocomposites were produced by adding different ratios of the ZnO-HSPs to the biodegradable CS biopolymer by hydrothermal method. The resulting materials were characterized using various biophysical strategies, including X-ray diffraction (XRD), Fourier transform infrared spectrometry, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy. The mean particle size of ZnO was estimated to be 29 nm from the XRD calculations and SEM measurements. The effect of the ZnO-HSPs on the thermal properties of pure CS was investigated by thermogravimetric analysis and differential scanning calorimetry techniques, and improvements were noted in the thermal properties of CS. While the T-g value of CS was 81 degrees C, this value increased by 13-94 degrees C with the addition of 6 wt% by weight of the ZnO-HSP. The antibacterial effect of materials was determined by the disc diffusion method. The ZnO-HSPs added to the CS caused the nanocomposites to have a remarkable effect against Escherichia coli and Staphylococcus aureus microorganisms. While the inhibition diameter of the CS against E. coli was 18.3, the same value increased to 22.3 for the composite containing 6 wt% the ZnO-HSP. The HSP increased the antioxidant capacity of both the ZnO-HSP particles and the CS/ZnO-HSP nanocomposites, reducing the toxic effects of ZnO nanoparticles. Thus, it was determined that the CS/ZnO-HSP nanocomposites did not have any cytotoxicity in healthy human cells. The fact that the produced nanocomposites exhibit antibacterial activity and do not harm human cells shows that they can be a safe product for health. From all these results, this triple hybrid system is hoped that it will be used in biomedical applications as a naturally-sourced, environmentally friendly, and cost-effective composite biomaterial by combining its antimicrobial and strong antioxidant properties.