Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Guler, Osman" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Hand Gesture Recognition from 2D Images by Using Convolutional Capsule Neural Networks
    (Springer Heidelberg, 2021) Guler, Osman; Yucedag, Ibrahim
    Object classification and recognition are an important research area widely used in computer vision and machine learning. With the use of deep learning methods in the field of object recognition, there have been important developments in recent years. Object recognition and its sub-branches face recognition, motion recognition, and hand gesture recognition are now used effectively in devices used in daily life. Hand sign classification and recognition are an area that researchers are working on and trying to develop for human-computer interaction. In this study, a hybrid model was created by using a capsule network algorithm with a convolutional neural network for object classification. A dataset, named HG14, containing 14 different hand gestures was created. To measure the success of the proposed model in object recognition, training was carried out on HG14, FashionMnist, and Cifar-10 datasets. Also, VGG16, ResNet50, DenseNet, and CapsNet models were used to classify the images in HG14, FashionMnist, and Cifar-10 datasets. The results of the training were compared and evaluated. The proposed hybrid model achieved the highest accuracy rates with 90% in the HG14 dataset, 93.88% in the FashionMnist dataset, and 81.42% in the Cifar-10 dataset. The proposed model was found to be successful in all studies compared to other models.

| Düzce Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Düzce Üniversitesi, Kütüphane ve Dokümantasyon Daire Başkanlığı, Düzce, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim