Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Gandhi, Ravi" seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Design and Robustness Analysis of Multiple Extended State Observer Based Controller (MESOBC) for AVR of the Power System
    (Hindawi Limited, 2023) Gandhi, Ravi; Masikana, S.B.; Sharma, Gulshan; Çelik, Emre
    Automatic voltage regulator (AVR) is installed on the synchronous generators in the power system and plays a very important role in maintaining the generator output voltage besides changes in load demand, parametric uncertainties, and operating temperature. As the load is continuously varying in the system, the AVR needs controllers to track and regulate the voltage of the synchronous generator much faster. This paper shows an initial attempt to design a robust multiple extended state observer (MESO) to estimate the variation in lump disturbances (i.e., load demand and parametric uncertainties) from all the components of the AVR. MESO-based controller (MESOBC) can track such matching and mismatching of both types of irregularities and regulate the terminal voltage of the generator accordingly. MESOBC performance is matched with strong published AVR designs for a standard condition, ±30% load voltage variation and for simultaneous changes in AVR parameters with ±30% load voltage variations. Integrated square error (ISE) is chosen as an objective function to compare the output of MESOBC with other published AVR designs in view of graphical AVR responses and by calculating various numerical values for AVR responses. At last, the robustness of MESOBC is also checked through sensitivity analysis, and it is seen that MESOBC guaranteed robust performance for the AVR of the power system under diverse operating conditions. © 2023 Ravi Gandhi et al.
  • Küçük Resim Yok
    Öğe
    Enhanced automatic voltage regulation using an extended PIDA controller optimised by the snake algorithm
    (Elsevier, 2025) Chetty, Nelson Dhanpal; Gandhi, Ravi; Sharma, Gulshan; Celik, Emre; Kumar, Rajesh
    Maintaining voltage stability within acceptable limits is crucial in power systems, with Automatic Voltage Regulation (AVR) ensuring consistent performance. Traditionally, PID controllers have been widely used; however, they struggle in complex, nonlinear environments with fluctuating conditions and disturbances. This study proposes an Extended PID-Acceleration (ePIDA) controller incorporating a novel state observer-based Disturbance Observer (DOB) for enhanced voltage regulation. The Snake Optimiser (SO) is introduced for the first time in AVR tuning, leveraging its dynamic leader-follower mechanism to achieve faster convergence and optimal controller gains. The SO-ePIDA framework extends the traditional PIDA structure with a three-degree-offreedom (3DOF) approach, enhancing setpoint tracking and disturbance rejection. The proposed approach is evaluated against six widely used optimisation strategies through comparative statistical and graphical analyses, considering step-load variations and system parameter settings. Results demonstrate that the SO-ePIDA controller achieves a rise time of 0.1679 s, a settling time of 0.3123 s, and the lowest ISTAE value of 0.0046, ensuring superior transient response and steady-state accuracy. Furthermore, under a 30 % step-load disturbance, the proposed controller exhibits the fastest recovery time of 0.1065 s, significantly outperforming other methods. The AVR system was tested with +25 % and +50 % variations in system parameters to assess robustness under parametric uncertainty. The results confirm that the SO-ePIDA controller maintains stability, with rise time deviations limited to 0.1577 and 0.2004 s and ISTAE variations between 0.0116 and 0.1891, demonstrating strong adaptability under extreme operating conditions. These findings establish the SO-ePIDA framework as a robust, high-performance solution for real-world AVR applications.
  • Küçük Resim Yok
    Öğe
    A Novel Salp Swarm Optimization Oriented 3-DOF-PIDA Controller Design for Automatic Voltage Regulator System
    (Ieee-Inst Electrical Electronics Engineers Inc, 2024) Chetty, Nelson Dhanpal; Sharma, Gulshan; Gandhi, Ravi; Celik, Emre
    Voltage stability is critical in electrical power systems, and automatic voltage regulators play a crucial role in maintaining voltage levels within permissible limits. Due to their simplicity and effectiveness, traditional Proportional-Integral-Derivative (PID) controllers have been widely used in automatic voltage regulation. However, they may not always perform optimally in complex power systems with varying operating conditions and external disturbances. This research introduces an integrated approach of employing a 3-degrees of freedom-PID-Acceleration (3-DOF-PIDA) controller coupled with a disturbance observer-based control strategy. This combination is embedded with a simple but effective salp swarm optimisation algorithm. This novel control approach of the combined 3-DOF-PIDA, disturbance observer and salp swarm optimisation will enhance the voltage regulation of the system. The proposed novel control strategy incorporates an acceleration component to continuously adjust its parameters based on system dynamics. Simultaneously, the disturbance observer is responsible for estimating and compensating for external disturbances, further improving the system's performance. The salp swarm optimization is applied to optimize both the PIDA control parameters and the disturbance observer's parameters in the automatic voltage regulation system to find optimal solutions that improve voltage regulation and disturbance rejection capabilities. The results are established by performing statistical and graphical analyses with time-varying step load fluctuations, and under various system parameter variations. The results are validated by comparisons to five popular optimization algorithms found in the reviewed literature. The investigations demonstrate that this new proposed approach provides outstanding performance, in the presence of substantial system parameter fluctuations and uncertainties.

| Düzce Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Düzce Üniversitesi, Kütüphane ve Dokümantasyon Daire Başkanlığı, Düzce, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim