Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Güler, Recep" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Diagnosis of Lichen Sclerosus, Morphea, and Vasculitis Using Deep Learning Techniques on Histopathological Skin Images
    (Sakarya University, 2025) Güler, Recep; Karapinar Şentürk, Zehra; Gamsizkan, Mehmet; Ozcan, Yunus
    Skin diseases are very common all over the world. The examination can be done by photographing the relevant area or taking a tissue sample to diagnose skin diseases. Examining tissue samples allows examination at the cellular level. This study discussed three skin diseases: lichen sclerosus, morphea, and cutaneous small vessel vasculitis (vasculitis). For this problem, which does not have an open-access dataset in the literature, a dataset consisting of histopathological images belonging to each class was created. Convolutional neural network models were created for this three-class classification problem, and their results were evaluated. In addition, in this problem where it is difficult to obtain sample images, the efficiency of transfer learning methods was evaluated with a limited number of examples. For this purpose, tests were performed with VGG16, ResNet50, InceptionV3, and EfficientNetB4 models, and the results were given. Among all the results, the accuracy value of the VGG16 model was 0.9755 and gave the best result. However, although the accuracy value was quite good, precision, recall, and f1-score metrics values were around 0.65. This shows deficiencies in how often the model correctly predicts the positive class and how well it predicts all positive examples in the dataset. © 2025 Elsevier B.V., All rights reserved.

| Düzce Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Düzce Üniversitesi, Kütüphane ve Dokümantasyon Daire Başkanlığı, Düzce, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim