Yazar "Ersoz, Mirac Berke Topcu" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Anti-adherent activity of nano-coatings deposited by thermionic vacuum arc plasma on C. albicans biofilm formation(Sage Publications Ltd, 2023) Ersoz, Mirac Berke Topcu; Mumcu, Emre; Avukat, Esra Nur; Akay, Canan; Pat, Suat; Erdonmez, DemetBackground: The purpose of this study was to analyze the anti-adherent activity of nano-coatings deposited by Thermionic Vacuum Arc plasma on C. albicans ATCC 10231 biofilm. Materials and methods: A total of 80 disc-shaped (2 x 10 mm) polymethymethacrylate samples were prepared and divided into four groups with 10 samples in each group (Control, ZnO, SnO2, Ag) (n = 10). Using thermionic vacuum arc plasma, they were coated with ZnO, SnO 2, and Ag. 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Crystal Viole (CV) assays were conducted for biofilm quantification. Scanning electron microscopy (SEM) was used to observe biofilm images of C. albicans biofilm. Results: MTT and CV mean values differ statistically significantly between all groups (p <= 0.05). The SnO2 group had the lowest mean value, whereas the control group received the highest value. Conclusion: SnO2 coating shown greater anti-adherent activity than either metal oxides. C. albicans biofilm formation on denture base surfaces is reduced following Thermionic Vacuum Arc plasma coating with SnO2.Öğe Could Helium Plasma Treatment be a Novel Approach to Prevent the Biofilm Formation of Candida albicans?(Springer, 2023) Avukat, Esra Nur; Akay, Canan; Ersoz, Mirac Berke Topcu; Mumcu, Emre; Pat, Suat; Erdonmez, DemetThere is no definitive method to prevent Candida albicans (C. albicans) biofilm formation on polymethyl methacrylate (PMMA) surfaces. The objective of this study was to evaluate the effect of Helium plasma treatment (before the application of removable dentures to the patient) to prevent or reduce C. albicans ATCC 10,231 the anti-adherent activity, viability, and biofilm formation on PMMA surfaces. One hundred disc-shaped PMMA samples (2 mm x 10 mm) were prepared. The samples were randomly divided into 5 surface groups and treated with different concentrations of Helium plasma: G I: Control group (untreated), G II: 80% Helium plasma-treated group, G III: 85% Helium plasma-treated group, G IV: 90% Helium plasma-treated group, G V: 100% Helium plasma-treated group. C. albicans viability and biofilm formations were evaluated using 2 methods: MTT (3-(4,5-dimethyl thiazolyl-2)-2, 5-diphenyltetrazolium bromide) assays and Crystal Violet (CV) staining. The surface morphology and C. albicans biofilm images were observed with scanning electron microscopy. The Helium plasma-treated PMMA groups (G II, G III, G IV, G V) observed a significant reduction in C. albicans cell viability and biofilm formation compared with the control group. Treating PMMA surfaces with different concentrations of Helium plasma prevents C. albicans viability and biofilm formation. This study suggests that Helium plasma treatment might be an effective strategy in modifying PMMA surfaces to prevent denture stomatitis formation.