Yazar "Erkan, Omer" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Comprehensive analysis of mechanical properties, wear, and corrosion behavior of AA7075-T6 alloy subjected to cryogenic treatment for aviation and defense applications(Elsevier Science Sa, 2024) Altas, Emre; Bati, Serkan; Rajendrachari, Shashanka; Erkan, Omer; Dag, Ilker Emin; Avar, BarisIt is important that the parts to be used in the aviation and defense industry have high wear, fatigue and corrosion resistance. AA7075-T6 alloys are increasingly used in every field due to their advantageous physical and mechanical properties. However, some of the materials of this alloy types exhibit excellent fatigue strength and ductility, but their surface hardness and surface roughness after processing may be poor. For this reason, the wear resistance of AA7075-T6 aluminum alloy expected to be improved in order to increase their corrosion resistance properties. In this work, cryogenic treatment was applied to AA7075-T6 alloy and the mechanical characteristics, wear and corrosion behaviors of these samples were examined. As a result of the experiments, it was determined that cryogenic treatment improved the wear behavior of AA7075-T6 alloy. The untreated sample was found to have the highest wear rate, whereas the sample with deep cryogenic treatment (DCT) had the lowest wear rate. The hardness of the DCT process increased by 5.79 %, according to macro hardness measurements, making the AA7075-T6 alloy harder from 80.16 HRB to 84.8. The SEM images revealed that, the shallow cryogenic and deep cryogenic operations had substantial effects on the microstructure by modifying the size and distribution of precipitates in the AA7075-T6 alloy. In addition, tensile and hardness tests were carried out to assess the mechanical characteristics of the samples. Accordingly, the maximum tensile strength and hardness values were obtained in the deep cryogenically treated sample. The tensile strength of the DCT sample was approximately 544.18 MPa, a considerable 11.5 % increase above the untreated sample's 488.07 MPa strength. In potentiodynamic polarization testing, the DCT treated sample was determined to have the maximum corrosion resistance. Among the materials tested, the DCT sample showed the strongest corrosion resistance, with a corrosion potential of -0.689 V and a corrosion rate of 0.021 mm/year. Wear rate analysis revealed that DCT samples experienced the least material loss, demonstrating improved abrasion resistance. Enhanced hardness and the formation of stable oxide tribo-layers contributed to these superior wear characteristic.Öğe Surface quality optimization of CFRP plates drilled with standard and step drill bits using TAGUCHI, TOPSIS and AHP method(Emerald Group Publishing Ltd, 2021) Sur, Gokhan; Erkan, OmerPurpose Drilling of carbon fiber reinforced plastic (CFRP) composite plates with high surface quality are of great importance for assembly operations. The article aims to optimize the drill geometry and cutting parameters to improve the surface quality of CFRP composite material. In this study, CFRP plates were drilled with uncoated carbide drill bits with standard and step geometry. Thus, the effects of standard and step drill bits on surface quality have been examined comparatively. In addition, optimum output parameters were determined by Taguchi, ANOVA and multiple decision-making methods. Design/methodology/approach Drill bit point angles were selected as 90 degrees, 110 degrees and 130 degrees. In cutting parameters, three different cutting speeds (25, 50 and 75 m/min) and three different feeds (0.1, 0.15 and 0.2 mm/rev) were determined. L18 orthogonal sequence was used with Taguchi experimental design. Three important output parameters affecting the surface quality are determined as thrust force, surface roughness and delamination factor. For each output parameter, the effects of drill geometry and cutting parameters were evaluated. Input parameters affecting output parameters were analyzed using the ANOVA method. Output parameters were estimated by creating regression equations. Weights were determined using the analytic hierarchy process (AHP) method, and multiple output parameters were optimized using technique for order preference by Similarity to An ideal solution (TOPSIS). Findings It has been determined from the experimental results that step drills generate smaller thrust forces than standard drills. However, it has been determined that it creates greater surface roughness and delamination factor. From the Taguchi analysis, the optimum input parameters for Fz step tool geometry, 90 degrees point angle, 75 m/min cutting speed and 0.1 mm/rev feed. For Fd, are standard tool geometry, 90 degrees point angle, 25 m/min cutting speed and 0.1 mm/rev feed and for Ra, are standard tool geometry, 130 degrees point angle, 25 m/min cutting speed and 0.1 mm/rev feed. ANOVA analysis determined that the most important parameter on Fd is the tip angle, with 56.33%. The most important parameter on Ra and Fz was found to be 40.53% and 77.06% tool geometry, respectively. As a result of the optimization with multiple criteria decision-making methods, the test order that gave the best surface quality was found as 4-1-9-5-8-17-2-13-6-16-18-15-11-10-3-12-14. The results of the test number 4, which gives the best surface quality, namely, the thrust force is 91.86 N, the surface roughness is 0.75 mu m and the delamination factor is 1.043. As a result of experiment number 14, which gave the worst surface quality, the thrust force was 149.88 N, the surface roughness was 3.03 mu m and the delamination factor was 1.163. Practical implications Surface quality is an essential parameter in the drilling of CFRP plates. Cutting tool geometry comes first among the parameters affecting this. Therefore, different cutting tool geometries are preferred. A comparison of these cutting tools is discussed in detail. On the other hand, thrust force, delamination factor and surface roughness, which are the output parameters that determine the surface quality, have been optimized using the TOPSIS and AHP method. In this way, this situation, which seems complicated, is presented in a plain and understandable form. Originality/value In the experiments, cutting tools with different geometries are included. Comparatively, its effects on surface quality were examined. The hole damage mechanism affecting the surface quality is discussed in detail. The results were optimized by evaluating Taguchi, ANOVA, TOPSIS and AHP methods together.