Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Erdogmus, P." seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Benchmarking the Clustering Performances of Evolutionary Algorithms: A Case Study on Varying Data Size
    (Elsevier Science Inc, 2020) Kayaalp, F.; Erdogmus, P.
    Background and objective: Clustering is a widely used popular method for data analysis within many clustering algorithms for years. Today it is used in many predictions, collaborative filtering and automatic segmentation systems on different domains. Also, to be broadly used in practice, such clustering algorithms need to give both better performance and robustness when compared to the ones currently used. In recent years, evolutionary algorithms are used in many domains since they are robust and easy to implement. And many clustering problems can be easily solved with such algorithms if the problem is modeled as an optimization problem. In this paper, we present an optimization approach for clustering by using four well-known evolutionary algorithms which are Biogeography-Based Optimization (BBO), Grey Wolf Optimization (GWO), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). Method: the objective function has been specified to minimize the total distance from cluster centers to the data points. Euclidean distance is used for distance calculation. We have applied this objective function to the given algorithms both to find the most efficient clustering algorithm and to compare the clustering performances of algorithms against different data sizes. In order to benchmark the clustering performances of algorithms in the experiments, we have used a number of datasets with different data sizes such as some small scale, medium and big data. The clustering performances have been compared to K-means as it is a widely used clustering algorithm for years in literature. Rand Index, Adjusted Rand Index, Mirkin's Index and Hubert's Index have been considered as parameters for evaluating the clustering performances. Result: As a result of the clustering experiments of algorithms over different datasets with varying data sizes according to the specified performance criteria, GA and GWO algorithms show better clustering performances among the others. Conclusions: The results of the study showed that although the algorithms have shown satisfactory clustering results on small and medium scale datasets, the clustering performances on Big data need to be improved. (C) 2020 AGBM. Published by Elsevier Masson SAS. All rights reserved.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Font and Turkish Letter Recognition in Images with Deep Learning
    (Institute of Electrical and Electronics Engineers Inc., 2019) Sevik, A.; Erdogmus, P.; Yalein, E.
    The purpose of this article is to recognize letter and especially font from images which are containing texts. In order to perform recognition process, primarily, the text in the image is divided into letters. Then, each letter is sended to the recognition system. Results are filtered according to vowels which are most used in Turkish texts. As a result, font of the text is obtained. In order to separate letters from text, an algorithm used which developed by us to do separation. This algorithm has been developed considering Turkish characters which has dots or accent such as i, j, ü, ö and g and helps these characters to be perceived by the system as a whole. In order to provide recognition of Turkish characters, all possibilities were created for each of these characters and the algorithm was formed accordingly. After recognizing the each character, these individual parts are sended to the pre-trained deep convolutional neural network. In addition, a data set has been created for this pre-trained network. The data set contains nearly 13 thousands of letters with 227?227?3 size have been created with different points, fonts and letters. As a result, 100 percent of success has been attained in the training. %79.08 letter and %75 of font success has been attained in the tests. © 2018 IEEE.

| Düzce Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Düzce Üniversitesi, Kütüphane ve Dokümantasyon Daire Başkanlığı, Düzce, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim