Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Doganci, Erdinc" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Cholesterol functionalized linear Poly(ε-caprolactone) polymers: Effects of chain length on mesomorphic and dielectric properties
    (Elsevier Science Sa, 2025) Doganci, Merve Dandan; Davarci, Derya; Uner, Melek; Demir, Ahmet; Musatat, Ahmad Badreddin; Akdogan, Mustafa; Doganci, Erdinc
    Cholesterol-functionalized linear poly (epsilon-caprolactone) (Chol-PCL) polymers with different chain lengths (n = 10, 20, 30, and 70) were successfully synthesized via a ring-opening polymerization reaction using cholesterol as initiator. Their structures were confirmed by 1H NMR and FT-IR spectroscopy, and their various dielectric properties were extensively investigated in a frequency range from 100 Hz to 1 MHz under different voltage conditions (0-20 V). The results revealed that all the obtained polymers have focal conic fan shape textures of the smectic phase, encouraging the mesomorphism. In particular, Chol-PCL30 showed superior dielectric performance and exhibited the highest capacitance values and optimal dielectric stability over the measured frequency spectrum. The study showed a non-linear relationship between the chain length of PCL and dielectric properties, with the medium chain length (n = 30) providing the most favorable molecular architecture for enhanced charge capability and dielectric response. Complex impedance analysis revealed a pronounced relaxation behavior as a function of chain length, with Chol-PCL30 showing the most pronounced impedance response. These results provide valuable insights into the structure-property relationships in cholesterol-modified PCL systems and their potential applications in dielectric materials. To address the limitations of existing dielectric materials and explore novel polymeric systems with enhanced electrical properties, cholesterol-functionalized linear poly (epsilon-caprolactone) (Chol-PCL) polymers were successfully synthesized with precisely controlled chain lengths (n = 10, 20, 30, and 70) via ring-opening polymerization using cholesterol as an initiator. Structural confirmation was achieved through 1H NMR and FT-IR spectroscopy. A comprehensive investigation into their dielectric properties, including capacitance, conductance, dielectric constant, dissipation factor, electrical modulus, and impedance, was conducted across a broad frequency range (100 Hz-1 MHz) under varying voltage conditions (0-20 V). All synthesized polymers exhibited focal conic fan shape textures characteristic of the smectic phase, indicating their mesomorphic nature. Notably, Chol-PCL30 demonstrated exceptional dielectric performance, exhibiting the highest capacitance values and notable dielectric stability across the measured frequency spectrum. This study revealed a significant non-linear correlation between the PCL chain length and the observed dielectric properties, with the medium chain length (n = 30) providing an optimal molecular architecture for enhanced charge storage capability and dielectric response. Furthermore, complex impedance analysis elucidated a pronounced relaxation behavior that was highly dependent on chain length, with Chol-PCL30 exhibiting the most significant impedance response. These findings offer crucial insights into the intricate structure-property relationships within cholesterol-modified PCL systems, paving the way for their potential application in advanced dielectric materials.
  • Küçük Resim Yok
    Öğe
    Synthesis and electrical characterization of poly[(linoleic acid)-g-(styrene)-g-(?-caprolactone)] graft copolymers as gate insulator for OFET devices
    (Wiley, 2023) Gurel, Murat; Cavus, Fatma Kosovali; Demir, Ahmet; Doganci, Erdinc; Alli, Abdulkadir; Alli, Sema
    This study reports a one-pot process used to synthesize poly[(linoleic acid)-g-(styrene)-g-(epsilon-caprolactone)] (PLina-g-PSt-g-PCL) graft copolymers. The process was carried out by combining the atom transfer radical polymerization of styrene with the ring-opening polymerization of e-caprolactone from polymeric linoleic acid having hydroxyl groups and bromine groups in the main chain. The characterization of the products was achieved using proton nuclear magnetic resonance, size-exclusion chromatography, Fourier transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry techniques. Subsequently, an organic field effect transistor (OFET) was fabricated with PLina-g-PSt-g-PCL graft copolymers as the insulator layer. Poly(3-hexylthiophene) (P3HT) was used as the active layer and prepatterned OFET substrates were used as the welding/discharge electrodes. To measure capacitance, an ITO/P3HT/PLina-g-PSt-g-PCL/Al structure was prepared using the same method. To obtain output and transfer current-voltage characteristics, electrical characterizations of OFET devices were conducted in darkness and an atmosphere of air. From a capacitance-frequency plot, the key characteristics of the devices, including the threshold voltage (V-Th), field effect mobility, and current on/off ratio (I-on/off), were derived. The fundamental electrical parameters in the fabricated OFET devices based on styrene concentration were thoroughly examined. It was observed that the produced PLina-g-PSt-g-PCL OFETs display positive device characteristics such as low V-Th, exceptional mobility, and I-on/off values. (c) 2023 The Authors. Polymer International published by John Wiley & Sons Ltd on behalf of Society of Industrial Chemistry.

| Düzce Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Düzce Üniversitesi, Kütüphane ve Dokümantasyon Daire Başkanlığı, Düzce, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim