Yazar "Demirci, Tuna" seçeneğine göre listele
Listeleniyor 1 - 19 / 19
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Bovine carbonic anhydrase (bCA) inhibitors: Synthesis, molecular docking and theoretical studies of bisoxadiazole-substituted sulfonamide derivatives(Elsevier, 2024) Eybek, Abdulbaki; Kaya, Mustafa Oguzhan; Gulec, Ozcan; Demirci, Tuna; Musatat, Ahmad Badreddin; Ozdemir, Oguzhan; Oner, Mine Nazan KerimakThis paper describes the in vitro inhibition potential of bisoxadiazole-substituted sulfonamide derivatives (6a-t) against bovine carbonic anhydrase (bCA) after they were designed through computational analyses and evaluated the predicted interaction via molecular docking. First, in silico ADMET predictions and physicochemical property analysis of the compounds provided insights into solubility and permeability, then density functional theory (DFT) calculations were performed to analyse their ionization energies, nucleophilicity, in vitro electron affinity, dipole moments and molecular interactions under vacuum and dimethyl sulfoxide (DMSO) conditions. After calculating the theoretical inhibition constants, IC50 values determined from enzymatic inhibition were found between 12.93 and 45.77 mu M. Molecular docking evaluation revealed favorable hydrogen bonding and pi-interactions of the compounds within the bCA active site. The experimentally most active compound, 6p, exhibited the strongest inhibitory activity with a theoretical inhibition constant value of 9.41 nM and H-bonds with Gln91, Thr198, and Trp4 residues and His63 Pi-cation interactions with His63 residues. Overall, the study reveals promising bCA blocking potential for the synthesized derivatives, similar to acetazolamide.Öğe CdSeTe Kuantum Noktaları ile Bromo Krezol Mor Kombinasyonunun Spektrofotometrik Değerlendirmesi(2023) Demirci, Tuna; Elibol, ErdemKuantum noktalar (QDs) sahip oldukları benzersiz optik ve elektronik özellikleri ile son yıllarda birçok farklı teknolojik alanda popüler hale gelmişlerdir. Bu durum QD'lar ile organik bileşiklerin etkileşimine olan ilgiyi arttırmaktadır. Bu çalışmada bu ilgiye temel alarak, CdSeTe QD'lar ile Brom Krezol Moru (BCP) kloroform içerisinde oda sıcaklığın da etkileşimini ve CdSeTe QDs/BCP yapısının spektroskopik olarak karakterizasyonu açıklamayı amaçlamıştır. Bu amaç doğrultusunda CdSeTe QDs/ BCP oluşumunun etkileşimleri spektroskopik olarak Fourier dönüşümlü kızılötesi spektroskopisi (FTIR), absorbans ve emisyon üzerinden karakterizasyon çalışmaları yapılmıştır. BCP'nin CdSeTe QD'lar ile hibritleşmesiyle QDs'nin lüminesans pikinde 19 kat azalma tespit edilmiştir. Bununla birlikte Brom Krezol Moru (BCP) ile hibritleşen CdSeTe QD'lar BCP'nin soğurma özelliğini 112.8 katına kadar arttırmıştır.Öğe The Effect of Cryogenic Treatment on Some Chemical, Physical, and Mechanical Properties of Thermowood (R) Oriental Spruce(North Carolina State Univ Dept Wood & Paper Sci, 2022) Aytin, Ayhan; Uygur, İlyas; Demirci, Tuna; Akgül, İrfanEffects of cryogenic treatment on the chemical, physical, and mechanical properties of oriental spruce wood, which was heat-treated with the Thermowood (R) method, were investigated in this work. Cryogenic treatment, which is a secondary process applied to industrially heat-treated ferrous and non-ferrous metallic materials, was applied to Thermowood (R) Oriental spruce wood. For this purpose, Oriental spruce wood was first heat-treated at two different temperatures (190 and 212 degrees C), and then both Thermowood (R) and control samples were cryogenically treated at -80 degrees C. The effects on shrinkage and swelling pressure resistance parallel to fibers, and the elemental structure were examined. The findings revealed that the improvement in shrinkage and swelling continued with heat treatment, and there was an average increase of 18 and 14.5%, respectively, in the compressive strength parallel to fibers compared with control and heat-treated samples. The FT-IR analysis showed that the wood compound structure was mostly cellulosic. The difference between the carbon-oxygen ratio in the cryogenically-treated wood decreased compared to the percentage change in the three basic elements, and the amount of hydrogen increased proportionally.Öğe Exergetic, exergoeconomic, and sustainability analyses of diesel-biodiesel fuel blends including synthesized graphene oxide nanoparticles(Elsevier Sci Ltd, 2022) Uysal, Cüneyt; Ağbulut, Ümit; Elibol, Erdem; Demirci, Tuna; Karagöz, Mustafa; Sarıdemir, SuatIn this study, graphene oxide nanoparticles were synthesized and added to 85 vol% diesel + 15 vol% biodiesel (D85B15) blend with amounts of 100 ppm, 500 ppm, and 1000 ppm to prepare D85B15GO100, D85B15GO500, and D85B15GO1000 blends, respectively. The prepared fuels were tested in a compression ignition diesel engine. The experiments were performed on various engine loads ranging from 3 Nm to 12 Nm with intervals of 3 Nm at fixed crankshaft speed of 2400 rpm. The results obtained from the experiments were used in the exergetic, exergoeconomic, and sustainability analyses of test engine. According to the results, D85B15GO100 had the highest exergy efficiency and sustainability index and the second-cheapest specific exergy cost of crankshaft work. As a result, at 12 Nm, the exergy efficiency, specific exergy cost of work produced by crankshaft, and sustainability index values of test engine were 25.82%, 75.82 $/GJ, 1.348 for D85B15, whereas these values were 27.05%, 77.52 $/GJ, 1.371 for D85B15GO100, respectively. Increase in graphene oxide nanoparticle content in the blend led to decrease in the exergy efficiency and sustainability index and increase in the specific exergy cost of crankshaft work. Finally, it can be concluded that D85B15GO100 is optimal fuel compared to the fuels tested in this study.Öğe Interaction and Characterization of The Triarylmethane Dye Bromophenol Blue with CdSeTe Quantum Dots(2021) Elibol, Erdem; Demirci, TunaThe use of hybrid associates in biological, optoelectronics and energy fields are increasing dayby day. In this context, in this study, CdSeTe Quantum dots (QD): Bromophenol Blue (BPB)hybrid associates were studied for the first time in the literature and their spectroscopiccharacterizations were examined. In the study, CdSeTe QDs were synthesized withtrioctylphosphine (TOP) ligands by hot injection method, and it was planned that the BPBwould passivate the surface of the QD by interacting with the TOP ligand of the CdSeTe QDs.CdSeTe QD: BPB hybrid associates were prepared in different concentrations, and the effectsof QD: BPB ratios on absorbance and emission characterizations were examined. Structureshave been characterized using Uv-vis, PL, ICP-OES and FTIR. With the results found, thepredictive mechanism has been put forward.Öğe Investigating the effect of Zn doping and temperature on the photoluminescence behaviour of CuLaSe2 quantum dots(Wiley, 2024) Cadirci, Musa; Elibol, Erdem; Demirci, Tuna; Kurban, MustafaIn this study, CuLaSe2 and ZnCuLaSe2 quantum dots (QDs) with a mean size of similar to 4 nm were synthesized and characterized, and their temperature-dependent photoluminescence (PL) properties were studied in the temperature range from 90 to 300 K for the first time. The results show that the obtained QDs were spherical and revealed excitonic band gaps. The PL intensity for both types of materials decreased when increasing the temperature to 300 K, which was attributed to the nonradiative relaxation and thermal escape mechanisms. As the temperature was increased, the PL linewidths broadened, and PL peak energies were red shifted for both types of QDs due to the exciton-phonon coupling and lattice deformation potential mechanisms. In addition, we found that as the temperature was decreased, the PL spectrum of ZnCuLaSe2 QDs contained two extra components, which could be attributed to the shallow defect sites (low energy peak) and the crystal phase transition process (high energy peak). The spectrum of CuLaSe2 QDs contained one extra component, which could be attributed to the crystal phase transition process.Öğe Investigation on structural, optical, thermal, and dielectric properties of cellulose propionate/styrene-maleic anhydride copolymer/molybdenum nanocomposite prepared by pulsed laser ablation(Elsevier, 2024) Haladu, Shamsuddeen A.; Elsayed, Khaled A.; Ercan, Ismail; Ercan, Filiz; Kayed, T. S.; Demirci, Tuna; Yildiz, MesutPolymer nanocomposite films of cellulose propionate/styrene-maleic anhydride copolymer/molybdenum (CP/ SMAC/Mo) were fabricated by pulsed laser ablation of Mo in the polymer solution for 10, 20, and 30 min. The films were then characterized by various analytical methods. X-ray diffraction (XRD) revealed that the addition of Mo to CP/SMAC removed the crystalline peaks of Mo without changing the amorphous nature of the copolymer. According to the scanning electron microscopy (SEM) and atomic force microscopy (AFM) patterns, Mo atoms were trapped in the amorphous polymer stacks. The energy -dispersive X-ray (EDX) spectrum features C, O, and Mo. FTIR confirmed the embedding of Mo in the polymers. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were carried out on the samples. The pristine polymer film exhibited a band gap energy of 2.9 eV, which decreased to 2.05 eV because of the loading of the Mo nanoparticles. The intensity of the photoluminescence (PL) peak of the films increases with ablation time such that the absorption intensity of the film at a lambda max of 426 nm increases by trifold during the 30 min of irradiation, which is consequently due to the increased amount of Mo in the nanostructure. The incorporation of Mo in the polymer matrix enhances the dielectric constant ( epsilon') (6.28 -18.13) and ac conductivity ( sigma ac ) (3.19 x 10 - 5 -1.12 x 10 -4 S/cm) of the polymer with negligible dielectric loss. The results suggest possible technological utilization of these materials in such applications as supercapacitors, light -emitting diodes, and organic optoelectronic devices, among others.Öğe Magnetic Behavior and Nutrient Content Analyses of Barley (Hordeum vulgare L.) Tissues upon CoNd0.2Fe1.8O4 Magnetic Nanoparticle Treatment(Springer International Publishing Ag, 2020) Tombuloglu, Huseyin; Slimani, Yassine; Alshammari, Thamer; Tombuloglu, Guzin; Almessiere, Munirah; Baykal, Abdulhadi; Demirci, TunaThis study investigates (i) in planta uptake and transfer of magnetic nanoparticles (MNPs) in the plant body and (ii) impact of MNPs on plant nutrition. For these purposes, barley (Hordeum vulgare L.) seedlings were subjected by varied MNP doses (125 to 1000 mg L-1 of CoNd0.2Fe1.8O4) for 3 weeks in a hydroponic system. Plant tissues (root and leaf) were analyzed by using vibrating sample magnetometer (VSM) and inductively coupled plasma optical emission spectrometer (ICP-OES) techniques to understand MNPs' uptake and translocation in the plant body, and plant nutrition status as well. Elemental composition and magnetic behavior analyses of plant parts proved that MNPs, sized in 8.4 +/- 0.05 nm, are uptaken by the plant roots and led to an increase in iron (Fe), neodymium (Nd), and cobalt (Co) contents of leaves (p < 0.005). However, compared with the untreated control, the amount of some macro- and micro-elements (K, Ca, Mg, Mn, and P) are declined in the leaf by increased MNP doses (p < 0.05). Root-to-leaf translocation index (%) of the elements were dramatically decreased, except the one for Fe which increased from 25 (control) to 55% in 1000 mg L-1 condition. Accordingly, MNPs are uptaken by the plant roots and transferred to the leaves. However, it suppresses the translocation of essential nutrients. This finding shows that MNPs used in this study is detrimental for plant mineral nutrition. Besides, the VSM technique coupled with ICP-OES enables to track MNPs in the plant body.Öğe Novel Tetrazole And 1,3,4-Oxadiazole Derivatives Synthesis, Molecular Docking, Adme, Potential Activator For Rabbit Muscle Pyruvate Kinase(Univ Babes-Bolyai, 2024) Kaya, Mustafa Oguzhan; Demirci, Tuna; Karipcin, Selman; Ozdemir, Oguzhan; Kaya, Yesim; Arslan, Mustafa. The activation of muscle pyruvate kinase (PK) increases the conversion of phosphoenolpyruvate (PEP) to pyruvate, which results in the production of ATP. This is critical for supplying the energy needed for muscle contraction. In this study, we synthesized 1,4-dihydropyridine/pyridine compounds bearing tetrazole and 1,3,4-oxadiazole groups by using Hantzsch method and characterized by FT-IR spectroscopy, elemental analysis, and The studies revealed that all original synthesized compounds activated PK and AC50 (half-maximal activating concentration) values of the compounds were extremely effective (1.30 mu M to 14.65 mu M).Öğe One-pot synthesis of Hantzsch dihydropyridines using a highly efficient and stable PdRuNi@GO catalyst(Royal Soc Chemistry, 2016) Demirci, Tuna; Çelik, Betül; Yıldız, Yunus; Eriş, Sinan; Arslan, Mustafa; Şen, Fatih; Kılbaş, BenanAddressed herein, highly monodispersed PdRuNi nanoparticles furnished with graphene oxide (PdRuNi@GO NPs) were prepared as novel, stable, efficient and exceptionally reusable heterogeneous catalysts for 1,4-dihydropyridine synthesis via multicomponent condensation reactions of various aldehydes with dimedone, ammonium acetate and ethyl acetoacetate at 70 degrees C in DMF with efficient catalytic performance. These synthesized novel materials were characterized by transmission electron microscopy (TEM), high resolution electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). This presented one pot catalytic process is described as a new methodology of the Hantzsch synthesis, which can be assessed as quite simple and efficient as well as exceptionally reusable. At the end of the reaction, one of the highest yields and the shortest times were obtained for the model reaction in the presence of novel monodisperse PdRuNi@GO NPs.Öğe Rabbit muscle pyruvate kinase activators: Synthesis, molecular docking and theoretical studies of N-substituted sulfonamide derivatives(Elsevier, 2024) Kaya, Mustafa Oguzhan; Demirci, Tuna; Musatat, Ahmad Badreddin; Ozdemir, Oguzhan; Sonmez, Fatih; Kaya, Yesim; Arslan, MustafaPyruvate kinase (PK) activators have potential therapeutic applications in diseases such as sickle cell anemia. In this study, N-Substituted sulfonamide derivatives of 1,4-dihydropyridines were synthesized and evaluated as PK activators in vitro and using molecular docking studies. The compounds were synthesized by reacting dicarbonyl compounds with ammonium acetate, 5-nitrobenzaldehyde, and alumina sulfuric acid (ASA), followed by reduction and sulfonylation. The structures of the compounds were analyzed using spectroscopic techniques. DFT calculations provided insights into the electronic properties. Molecular docking of the compounds into the active site of PK showed favorable binding interactions. ADME evaluation indicated suitable solubility, BBB permeation, and lack of CYP450 inhibition. Overall, this study demonstrates the potential of new hybrid 1,4-dihydropyridine substituted sulfonamides as PK activators for further development. According to AC50 values, the compound (DTS-F-7, 0.97 mu M) is about 100-fold higher affective than the clinically used sulfonamide compound (AC50 = 90 mu M) for PK.Öğe Rational Design, Synthesis, and Computational Investigation of Dihydropyridine [2,3-d] Pyrimidines as Polyphenol Oxidase Inhibitors with Improved Potency(Springer, 2024) Kaya, Mustafa Oguzhan; Kerimak-Oner, Mine Nazan; Demirci, Tuna; Musatat, Ahmad Badreddin; Ozdemir, Oguzhan; Kaya, Yesim; Arslan, MustafaPolyphenol oxidase (PPO) is an industrially important enzyme associated with browning reactions. In the present study, a set of ten new dihydropyridine [2,3-d] pyrimidines (TD-Hid-1-10) were synthesized and was found to be proven characteristically by 1H NMR, 13C NMR, IR, elemental analysis, and assessed as possible PPO inhibitors. PPO was purified from banana using three-phase partitioning, achieving an 18.65-fold purification and 136.47% activity recovery. Enzyme kinetics revealed that the compounds TD-Hid-6 and TD-Hid-7 are to be the most potent inhibitors, exhibiting mixed-type inhibition profile with IC50 values of 1.14 mu M, 5.29 mu M respectively against purified PPO enzyme. Electronic structure calculations at the B3LYP/PBE0 level of theories using def-2 SVP, def2-TZVP basis sets with various molecular descriptors characterized the electronic behavior of studied derivatives TD-Hid-1-10. Molecular electrostatic potential (MEP) and reduced density gradient analyses of RDG-NCI provided insights into charge distributions and weak intermolecular interactions. Docking study simulations predicted binding poses within crucial amino acid sequence in the 2y9x enzyme's active site, which is typically similar in sequence to the PPO form is not allowed. Ligands were analysed in terms of binding energies, inhibitor concentrations (mM) and various molecular interactions such as H-bonds, H-carbon, pi-carbon, pi-sigma, pi-sigma, pi-pi T-shaped, pi-pi stacked, pi-alkyl, Van der Waals and Cu interactions. The lowest binding energy (-7.83 kcal/mol) and the highest inhibitory effect (1.83 mM) were shown by the ligand Td-Hid-6, which forms H-bonds with Met280 and Asn260, exhibits pi-sigma interactions with His61 and pi-alkyl interactions with Val283. Other ligands also showed different interactions with various amino acids; for example, the Td-Hid-1 ligand formed H-bonds with His244 and showed pi-sigma interactions with His244 and Val283.Öğe Structural, optical, and electrical investigation of multilayered MnO2(n)/ NiO(p) heterojunctions for supercapacitors applications(Elsevier, 2023) Alanazi, Maha; Ghrib, Taher; Ercan, Filiz; Alsubaie, Mizna; Demirci, Tuna; Kaygili, Omer; Kayed, Tarek S.Heterojunctions of alternating MnO2 and NiO thin films were deposited on an Indium Tin Oxide (ITO). The MnO2 and NiO thin films were synthesized by electrodeposition and sol-gel methods respectively. The structural morphology of the synthesized heterojunctions was investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The microstructural and chemical compositions were examined by X-ray diffraction (XRD), Fourier transform infrared (FTIR), and Raman techniques. The optical properties were investigated by Ultraviolet-Visible (UV) analysis. The electrical conductivity, specific capacitance, and charge carrier density were determined using the Hall effect and Electrochemical impedance spectroscopy (EIS) methods. As a result, it was found that the MnO2 and NiO thin films crystallize in tetragonal and cubic crystal systems respectively. Increasing the number of NiO/MnO2 heterojunctions increases the electrical conductivity from 9.7 x 10- 7 to 1.2 x 10-3 S.cm- 1, the bandgap decreased 3.16 to 2.62 eV, the volume carrier density rises from 5.17 x 1011 to 4.62 x 1012 cm-3. The specimens constituted of two and four alternative staked MnO2 and NiO layers are characterized by a specific capacitance of 3.6 x 103 and 5.8 x 103 F.g -1 and capacitance retention of 14.8 and 12.9% which consider them promising materials for supercapacitor devices.Öğe Synthesis and Biological Evaluation of Novel Dihydro [2,3D] Pyridine Substituted Enaminosulfonamide Compounds as Potent Human Erythrocyte Carbonic Anhydrase II (hCAII) Inhibitors(2021) Demirci, Tuna; Özdemir, Oğuzhan; Kaya, Mustafa Oğuzhan; Arslan, MustafaDihydro [2,3D] pyridine substituted enaminosulfonamide compounds have been synthesizedand their effects on carbonic anhydrase II (hCAII) have been evaluated. Pyrido [2,3 d] pyrimidines were synthesized from barbituric acid derivatives, malonanitrile, aldehyde derivatives inbasic condition and then hydrolyzed with hydrochloric acid. The targeted compounds were synthesized from amino sulfanilamide, dihydro [2,3D] pyridine compounds, and triethylorthoformate. 1H NMR, 13C NMR, FT-IR and elemental analysis were used for the structural analysisof the compounds. The half maximal inhibitory concentration (IC50) values of the compoundswere determined to be between 27.03 and 104.39 ?M for hCA II and 19.85-76.64 ?M for Ki.Öğe Synthesis of graphene oxide nanoparticles and the influences of their usage as fuel additives on CI engine behaviors(Pergamon-Elsevier Science Ltd, 2022) Ağbulut, Ümit; Elibol, Erdem; Demirci, Tuna; Sarıdemir, Suat; Gürel, Ali Etem; Rajak, Upendra; Afzal, AsifThe present paper aims to investigate the synthesis of graphene oxide (GO) nanoparticles, and the comprehensive investigation of their use along with the waste cooking oil methyl ester (WCO) and diesel fuel blend on combustion, injection, performance, and emission characteristics of a diesel engine under varying engine loads from 3 to 12 Nm with the gaps of 3 Nm at a fixed speed of 2400 rpm. The test fuels named B0 (completely neat diesel fuel), B15 (85% diesel and 15% WCO), B15 + 100 ppm GO (B15 and 100 ppm GO), B15 + 500 ppm GO (B15 and 500 ppm GO), B15 + 1000 ppm GO (B15 and 1000 ppm GO). In the results, it is noticed that blending of biodiesel into conventional diesel fuel drops the brake thermal efficiency (BTE) by 2.67%, CO by 7.5%, HC emissions by 8.53%, and increases the brake specific fuel consumption (BSFC) by 5.54%, and NOx emissions by 3.37% compared to those of reference-fuel B0. However, nanoparticle-added test fuels exhibit a respectable enhancement in all performance and emission characteristics. With the addition of GO nanoparticles, BTE increases by 7.90%, and BSFC drops by 9.72% due to the improved energy content of test fuels. On the other hand, NOx is pulled back by 15.17% due to both superior surface to volume area ratio and thermal properties of GO nanoparticles. Moreover, GO nanoparticles act as the oxygen buffer, and catalyst the chemical reactions until the combustion process. Accordingly, GO ensures more complete combustion, and therefore reduces CO emission by 22.5% and HC emission by 30.23%. In the conclusion, the present paper declares that GO nanoparticles can give a satisfying solution to improve the worsened characteristics arising from bio-diesel and diesel binary blends in CI engines. (c) 2021 Elsevier Ltd. All rights reserved.Öğe Synthesis of Highly Monodisperse CdSe Quantum Dots and Size Dependency of Optical Properties(Gazi Univ, 2021) Cadirci, Musa; Demirci, TunaSemiconductor quantum dots have wide application areas as they have unique electrical and optical properties. In recent years, CdSe quantum dots are one of the most preferred nanomaterials. Highly monodisperse zinc blend CdSe quantum dots were synthesized using hot injection method. The structure and optical properties of the samples were determined by UV-Vis, photoluminescence, XRD and TEM methods. As a result, the difference between 2S-1P absorption transitions did not change with particle size. However, the difference between 1S-2S and 1S-1P transitions were found to be inversely proportional to particle size. The FWHM value of the photoluminescence spectrum of the smallest sample has decreased to 25 mm and Stokes shifts were observed to be 0.06 eV.Öğe Synthesis, activatory effects, molecular docking and ADME studies as rabbit muscle pyruvate kinase activators of ureido phenyl substituted 1,4-dihydropyridine derivatives(Springer, 2024) Kaya, Mustafa Oguzhan; Demirci, Tuna; Calisir, Umit; Ozdemir, Oguzhan; Kaya, Yesim; Arslan, MustafaIn this study, the activation of pyruvate kinase enzyme in vitro via different urea substituents in the para position as functional groups of 1,4-dihydropyridine derivatives synthesized by Hantzsch reaction method was investigated. Elemental analysis, 1H-NMR, 13C-NMR and FT-IR spectroscopy were used to identify the ureido phenyl substituted 1,4-dihydropyridine derivatives. Virtual screening based on molecular docking supported the results of possible in vitro pyruvate kinase (PK) activators among the synthesized substances. The results showed that all compounds successfully activated PK. The strongest activator effect was shown by ethyl-4-(4-(4-(3-(3-methoxyphenyl)thioureido)phenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,7,8-hexahydroquinolin-3 (7) with an AC50 value of 87.70 mu M. In molecular docking studies, full compatibility (- 3016.93 FF), binding affinities (Delta G = - 8.58 kcal/mol), LUMO-HOMO energy gap (Delta E = 7.85 eV) in Density functional theory (DFT) studies and drug similarity score of the compounds were found to be 0.69. These results shed light on the therapeutic potential of the produced compounds to treat PK-related diseases.Öğe Synthesis, inhibition effects, molecular docking and theoretical studies as Paraoxonase 1 (PON1) inhibitors of novel 1,4-dihydropyridine substituted sulfonamide derivatives(Springer Birkhauser, 2023) Kaya, Mustafa Oguzhan; Demirci, Tuna; Özdemir, Oğuzhan; Çalışır, Ümit; Sönmez, Fatih; Arslan, MustafaThe novel sulfonamide substitute 1,4-dihydropyridine derivatives were synthesized by the method of Hantzsch reaction. They have been characterized by FT-IR spectroscopy, H-1-NMR, C-13-NMR, and elemental analysis. PON1 which is an antioxidant enzyme has important functions in cardiovascular systems. The enzyme has been purified using a two-step method such as ammonium sulfate precipitation and sepharose-4B-l-tyrosine-9-aminophenanthrene hydrophobic interaction chromatography. The results demonstrated that all the synthesized compounds inhibited PON1 enzyme. The best inhibition effect was observed in compound (1) for PON1 enzyme (IC50: 8.04 mu M, K-i: 5.43 mu M). The free radical scavenging for PON1 was discovered as 20.16 mg/mL, while drug score value was reported as 0.13 for compound (1). Furthermore, the lowest binding energy (-1.31 kcal/mol) determined by molecular docking for PON1 enzyme and the lowest LUMO-HOMO gap ( increment E = 3.12 eV) were calculated for compound (1).Öğe Yu?ksek Oranda Es? Parc?acık Boyutlu CdSe Kuantum Noktaların Sentezi ve Optiksel O?zelliklerinin Parc?acık Boyutlarına Bag?lılıg?ı(2021) Çadırcı, Musa; Demirci, TunaBenzersiz elektriksel ve optik özelliklerinden dolayı yarıiletken kuantum noktalar birçok uygulama alanına sahiptirler. Son yıllardaCdSe kuantum noktalar en fazla tercih edilen nanomalzemelerin başında yer almaktadır. Sıcak enjeksiyon metodunu kullanarakyüksek oranda eş parçacık boyutuna sahip ve altıgen tip bir simetriye sahip çinko blend kristal tipinde CdSe kuantum noktalarsentezlendi. Elde edilen numunelerin yapıları ve özellikleri UV-Vis, fotolüminesans, XRD ve TEM karakterizasyon metotlarıylaaydınlatıldı. Sonuç olarak bakıldığında 2S ile 1P absorbsiyon geçişleri arasındaki farkın parçacık boyutu ile değişmediği fakat 1Sile 2S ve 1S ile 1P geçişleri arasındaki farkın parçacık büyüklüğü ile ters orantılı olduğu gözlemlendi. En küçük numuneninfotolüminesans spektrumunun FWHM değeri 25 nm’ye kadar düştüğü ve Stokes kayma miktarlarının 0.06 eV olduğu gözlemlendi.