Yazar "Chen, W.-H." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Hydrogen Production by Water Splitting with Support of Metal and Carbon-Based Photocatalysts(American Chemical Society, 2023) Hoang, Anh Tuan; Pandey, Anand; Chen, W.-H.; Ahmed, S.F.; Ni?eti?, S.; Ng, K.H.; Said, ZafarHydrogen energy is environmental-friendly and considered an attractive alternative to fossil fuels. Among the feasible technologies for hydrogen generation, photocatalysis-derived hydrogen from water splitting is considered to be the optimal solution for meeting long-term sustainability and increased energy demands. In this context, various photocatalytic genres are proposed, with metal and carbon-supported photocatalysts demonstrating greater comprehensiveness and potential for addressing solar-driven hydrogen production from water. Several important aspects of the aforementioned photocatalytic genres are reviewed in the present work in an effort to provide pertinent researchers with new horizons for more advanced performance. The review is initiated by introducing the primary principles in photocatalysis, as well as the prerequisites for hydrogen generation from water. The focus then moves to metal-based photocatalysts, where the important features of these materials as photocatalysts are summarized. Related limitations are also discussed, along with the proposed strategies that could potentially mitigate them. Similar systematic summaries are made of knowledge on carbon-based photocatalysts. The review concludes with a discussion of potential future research directions in light of the bottlenecks currently encountered. With the proper research and development, metal-based and carbon-based photocatalysts could produce clean hydrogen from water, thereby fueling global development without causing environmental harm. © 2023 American Chemical Society.Öğe Microalgae bio-oil production by pyrolysis and hydrothermal liquefaction: Mechanism and characteristics(Elsevier Ltd, 2023) Ağbulut, Ümit; Sirohi, R.; Lichtfouse, E.; Chen, W.-H.; Len, C.; Show, P.L.; Le, A.T.Microalgae have great potential in producing energy-dense and valuable products via thermochemical processes. Therefore, producing alternative bio-oil to fossil fuel from microalgae has rapidly gained popularity due to its environmentally friendly process and elevated productivity. This current work aims to review comprehensively the microalgae bio-oil production using pyrolysis and hydrothermal liquefaction. In addition, core mechanisms of pyrolysis and hydrothermal liquefaction process for microalgae were scrutinized, showing that the presence of lipids and proteins could contribute to forming a large amount of compounds containing O and N elements in bio-oil. However, applying proper catalysts and advanced technologies for the two aforementioned approaches could improve the quality, heating value, and yield of microalgae bio-oil. In general, microalgae bio-oil produced under optimal conditions could have 46 MJ/kg heating value and 60% yield, indicating that microalgae bio-oil could become a promising alternative fuel for transportation and power generation. © 2023 Elsevier Ltd