Yazar "Cay, Yusuf" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Performance Assessment of a Refrigeration System Charged with Different Refrigerants Using Infrared Image Processing Techniques(Springer Heidelberg, 2021) Katircioglu, Ferzan; Cingiz, Zafer; Cay, Yusuf; Gurel, Ali Etem; Kolip, AhmetThis study aims to investigate the performance of R417A, R422A, R422D and R438A refrigerants as alternatives to R22, in a commercial type refrigeration system operating with R22 refrigerant. To this end, first of all, the cooling capacity and coefficient of performance (COP) values were calculated for all refrigerants used in the experimental setup. Then, two methods were proposed, Pearson's Correlation Similarity Analysis (PCSA) and surface temperature-based COP (COPST), to evaluate the success of each alternative refrigerants, and R22 with infrared image analysis, separately. The COP values obtained for the refrigerants with the mathematical method are R22 4.07, R438A 3.88, R417A 3.63, R422D 3.37, and R422A 3.18, respectively. Both the COP values and the PCSA values (R438A 0.9425, R417A 0.9343, R422D 0.9167 and R422A 0.9080) show the proximity between the R22 refrigerant and other refrigerants. Similarly, the COPST method revealed the values of R22 6.8865, R438A 5.9539, R417A 5.3273, R422D 4.9898 and R422A 4.3057, and the fact that it has the same order with the other two methods demonstrates its operability in the performance test application with the developed infrared image processing. The compatibility of the order in the experimental results obtained from the PCSA and COPST methods and the COP calculation method and has proved that thanks to infrared imaging, the remote performance analysis of the refrigeration system can be successfully performed.Öğe The Thermodynamic Analysis of the Refrigerants Alternative to R22 in the Vapor Compression Refrigeration System(Gazi Univ, 2020) Cingiz, Zafer; Katircioglu, Ferzan; Cay, Yusuf; Kolip, AhmetIn this study, the performances of the R417A, R438A, R422A and R422D refrigerants which are alternative to the commonly used and ozone layer-friendly R22 refrigerant are examined according to the first and second law of thermodynamics. Chemours Refrigerant Expert 1.0 and Genetron Properties 1.4 were used for the design of the vapor compression cycle. While the condensing temperature was kept constant during the analyses, the evaporation temperatures were determined according to the EUROVENT conditions (0 degrees C, -8 degrees C, -25 degrees C, -31 degrees C). The parameters calculated according to different evaporation temperatures are the required compressor power, performance coefficient (COP), and the required refrigerant mass flow rate. The results showed that the COP values of the R438A and R417A refrigerants were very close to that of R22. The COP values were 5%, 6%, 15% and 10% lower in R438A, in R471A, in R422A, and in R422D, respectively compared to the R22 refrigerant. The COP values were calculated as 13% for R422D and 17% for R422A. The highest exergy efficiency of the analyzed systems was calculated as 31.74% for R438A, 31% for R417A, 27.46% for R422A, and 29.24% for R422D at -25 degrees C evaporation temperature. The results of our study revealed that among the R417A, R438A, R422A and R422D refrigerants developed as an alternative to R22 refrigerant, the R438A refrigerant had comparatively higher COP values. Also, when the condenser and compressor loads were examined, it was found that the R438A, R417A, R422D and R422A refrigerants yielded the best results, respectively. Among the four alternative refrigerants examined, R438A and R417A were found to be better alternatives to R22 in terms of COP values, exergy efficiency, and exergy destruction.