Yazar "Cao, Dao Nam" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Improving the prediction of biochar production from various biomass sources through the implementation of eXplainable machine learning approaches(Taylor & Francis Inc, 2024) Nguyen, Van Giao; Sharma, Prabhakar; Agbulut, Uemit; Le, Huu Son; Cao, Dao Nam; Dzida, Marek; Osman, Sameh M.Examining the game-changing possibilities of explainable machine learning techniques, this study explores the fast-growing area of biochar production prediction. The paper demonstrates how recent advances in sensitivity analysis methodology, optimization of training hyperparameters, and state-of-the-art ensemble techniques have greatly simplified and enhanced the forecasting of biochar output and composition from various biomass sources. The study argues that white-box models, which are more open and comprehensible, are crucial for biochar prediction in light of the increasing suspicion of black-box models. Accurate forecasts are guaranteed by these explainable AI systems, which also give detailed explanations of the mechanisms generating the outcomes. For prediction models to gain confidence and for biochar production processes to enable informed decision-making, there must be an emphasis on interpretability and openness. The paper comprehensively synthesizes the most critical features of biochar prediction by a rigorous assessment of current literature and relies on the authors' own experience. Explainable machine learning techniques encourage ecologically responsible decision-making by improving forecast accuracy and transparency. Biochar is positioned as a crucial participant in solving global concerns connected to soil health and climate change, and this ultimately contributes to the wider aims of environmental sustainability and renewable energy consumption.Öğe Precise prognostics of biochar yield from various biomass sources by Bayesian approach with supervised machine learning and ensemble methods(Taylor & Francis Inc, 2024) Nguyen, Van Giao; Sharma, Prabhakar; Agbulut, Uemit; Le, Huu Son; Tran, Viet Dung; Cao, Dao NamBiomass pyrolysis is a sustainable process for generating biochar from agricultural waste, though it is generally energy-intensive and time-consuming. To address this issue, the researchers gathered data from published literature on various biomass types and employed ensemble methods (LSBoost) and supervised machine learning (Gaussian process regression) to construct predictive models. The results reveal that both models can predict well, with excellent correlations between expected and actual values. In comparison to the LSBoost model (0.9783 for training and 0.9879 for testing), the Gaussian process regression (GPR) model had higher R values for training (0.9883) and testing (0.9969). Likewise, the R2 values during training (0.9767) and testing (0.9938) were greater in the case of the GPR model than for the LSBoost model (0.9571 for training). Nash-Sutcliffe efficiency (NSE) revealed that both models captured the data precisely. However, the GPR model outperformed the LSBoost model in both during training as well as model test stages, providing higher (0.9766 for training and 0.9933 for testing) values. The GPR model outperforms the others due to superior correlation, improved variability capture, and lower errors. These findings offer useful insights for sustainable biomass utilization and provide valuable insights for optimizing pyrolysis operations.