Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Bin Mohsin, Bandar" seçeneğine göre listele

Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Inclusions Involving Interval-Valued Harmonically Co-Ordinated Convex Functions and Raina's Fractional Double Integrals
    (Hindawi Ltd, 2022) Bin Mohsin, Bandar; Awan, Muhammad Uzair; Javed, Muhammad Zakria; Budak, Hüseyin; Khan, Awais Gul; Noor, Muhammad Aslam
    The aim of this article is to obtain some new integral inclusions essentially using the interval-valued harmonically co-ordinated convex functions and kappa-Raina's fractional double integrals. To show the validity of our theoretical results, we also give some numerical examples.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Jensen-Mercer Type Inequalities in the Setting of Fractional Calculus with Applications
    (Mdpi, 2022) Bin Mohsin, Bandar; Javed, Muhammad Zakria; Awan, Muhammad Uzair; Mihai, Marcela, V; Budak, Hüseyin; Khan, Awais Gul; Noor, Muhammad Aslam
    The main objective of this paper is to establish some new variants of the Jensen-Mercer inequality via harmonically strongly convex function. We also propose some new fractional analogues of Hermite-Hadamard-Jensen-Mercer-like inequalities using AB fractional integrals. In order to obtain some of our main results, we also derive new fractional integral identities. To demonstrate the significance of our main results, we present some interesting applications to special means and to error bounds as well.
  • Yükleniyor...
    Küçük Resim
    Öğe
    On some classical integral inequalities in the setting of new post quantum integrals
    (Amer Inst Mathematical Sciences-Aims, 2022) Bin Mohsin, Bandar; Awan, Muhammad Uzair; Javed, Muhammad Zakria; Talib, Sadia; Budak, Hüseyin; Noor, Muhammad Aslam; Noor, Khalida Inayat
    In this article, we introduce the notion of aT over bar p,q-integrals. Using the definition of aT over bar p,q-integrals, we derive some new post quantum analogues of some classical results of Young's inequality, Ho center dot lder's inequality, Minkowski's inequality, Ostrowski's inequality and Hermite-Hadamard's inequality.
  • Yükleniyor...
    Küçük Resim
    Öğe
    A Quantum Calculus View of Hermite-Hadamard-Jensen-Mercer Inequalities with Applications
    (Mdpi, 2022) Bin Mohsin, Bandar; Saba, Mahreen; Javed, Muhammad Zakria; Awan, Muhammad Uzair; Budak, Hüseyin; Nonlaopon, Kamsing
    In this paper, we derive some new quantum estimates of generalized Hermite-Hadamard-Jensen-Mercer type of inequalities, essentially using q-differentiable convex functions. With the help of numerical examples, we check the validity of the results. We also discuss some special cases which show that our results are quite unifying. To show the efficiency of our main results, we offer some interesting applications to special means.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Quantum Integral Inequalities in the Setting of Majorization Theory and Applications
    (Mdpi, 2022) Bin Mohsin, Bandar; Javed, Muhammad Zakria; Awan, Muhammad Uzair; Budak, Hüseyin; Kara, Hasan; Noor, Muhammad Aslam
    In recent years, the theory of convex mappings has gained much more attention due to its massive utility in different fields of mathematics. It has been characterized by different approaches. In 1929, G. H. Hardy, J. E. Littlewood, and G. Polya established another characterization of convex mappings involving an ordering relationship defined over PO known as majorization theory. Using this theory many inequalities have been obtained in the literature. In this paper, we study Hermite-Hadamard type inequalities using the Jensen-Mercer inequality in the frame of q-calculus and majorized l-tuples. Firstly we derive q-Hermite-Hadamard-Jensen-Mercer (H.H.J.M) type inequalities with the help of Mercer's inequality and its weighted form. To obtain some new generalized (H.H.J.M)-type inequalities, we prove a generalized quantum identity for q-differentiable mappings. Next, we obtain some estimation-type results; for this purpose, we consider q-identity, fundamental inequalities and the convexity property of mappings. Later on, We offer some applications to special means that demonstrate the importance of our main results. With the help of numerical examples, we also check the validity of our main outcomes. Along with this, we present some graphical analyses of our main results so that readers may easily grasp the results of this paper.

| Düzce Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Düzce Üniversitesi, Kütüphane ve Dokümantasyon Daire Başkanlığı, Düzce, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim