Yazar "Barik, Debabrata" seçeneğine göre listele
Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Optimization of the pilot fuel injection and engine load for an algae biodiesel- hydrogen run dual fuel diesel engine using response surface methodology(Elsevier Sci Ltd, 2024) Mohite, Avadhoot; Bora, Bhaskor Jyoti; Agbulut, Uemit; Sharma, Prabhakar; Medhi, Bhaskar Jyoti; Barik, DebabrataThe main objective of the study is to enhance the performance and emissions of hydrogen and biodiesel dual-fuel engines by optimizing injection timing and engine load using response surface methodology. The pilot fuel considered for this study is Algae biodiesel. A mono-cylinder water-cooled diesel engine is tested for three different pilot fuel injection timings (23 degrees BTDC, 26 degrees BTDC, and 29 degrees BTDC) and five different engine loads (20%, 40%, 60%, 80%, and 100%). For a dual fuel operation, a maximum brake thermal efficiency of 28.21% and an 85% replacement of liquid charge was achieved at pilot fuel injection timing of 26 degrees BTDC and 100% load based on the experimental results. For the same setting of injection timing of 26 degrees BTDC, the emissions of CO and HC were significantly reduced by 12.12% and 36.13%, respectively, at the 80% load setting. While response surface optimum was found at 72.81% load and 25.73 degrees BTDC Injection timing. At this optimal operating parameter setting, a significant reduction of CO, HC, and NOx emissions by 20.98%, 29.15%, and 1.91%, respectively, was obtained while maintaining a comparable brake thermal efficiency of 25.06% and a replacement of liquid charge by 72.15%, respectively. Thus, a biodiesel-hydrogen dual-fuel diesel engine is one of the green solutions for power generation.