Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Balkan, Yavuz Selim" seçeneğine göre listele

Listeleniyor 1 - 10 / 10
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    ALMOST KENMOTSU f-MANIFOLDS
    (Vasyl Stefanyk Precarpathian Natl Univ, 2015) Balkan, Yavuz Selim; Aktan, Nesip
    In this paper we consider a generalization of almost Kenmotsu f-manifolds. We get basic Riemannian curvature, sectional curvatures and scalar curvature properties of such type manifolds. Finally, we give two examples.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Chen's Type Inequality forWarped Product Pseudo-slant Submanifolds of Kenmotsu f-manifolds
    (Univ Nis, Fac Sci Math, 2019) Balkan, Yavuz Selim; Alkhaldi, Ali H.
    In the present paper, we consider non-trivial warped product pseudo slant submanifolds of type M-perpendicular to X-f M-theta and M-theta X-f M-perpendicular to of Kenmotsu f-manifold (M) over bar. Firstly, we get some basic properties of these type warped product submanifolds. Then, we prove the general sharp inequalities for mixed totally geodesic warped product pseudo slant submanifolds and also we consider equality cases. Also generalizes some previous inequalities as well.
  • Yükleniyor...
    Küçük Resim
    Öğe
    A CLASS OF phi-RECURRENT ALMOST COSYMPLECTIC SPACE
    (Honam Mathematical Soc, 2018) Balkan, Yavuz Selim; Uddin, Siraj; Alkhaldi, Ali H.
    In this paper, we study phi-recurrent almost cosymplectic (k, mu)-space and prove that it is an eta-Einstein manifold with constant coefficients. Next, we show that a three-dimensional locally phi-recurrent almost cosymplectic (k, mu)-space is the space of constant curvature.
  • Küçük Resim Yok
    Öğe
    Generalized Inequalities of Warped Product Submanifolds of Nearly Kenmotsu f-Manifolds
    (Univ Nis, Fac Sci Math, 2019) Balkan, Yavuz Selim; Alkhaldi, Ali H.; Siddiqui, Aliya Naaz; Ali, Akram
    In the present paper, we establish two general sharp inequalities for the squared norm of second fundamental form for mixed totally geodesic warped product pseudo-slant submanifolds of the form M-perpendicular to x(f) M-theta and M-theta x(f) M-perpendicular to, in a nearly Kenmotsu f-manifold (M) over bar, which include the squared norm of the warping function and slant angle. Also, equality cases are verified. We proved that some previous results are trivial from our results. Moreover, we generalized the inequality theorems [3] and [26] from our derived results.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Geometry of Warped Product Pointwise Submanifolds of Sasakian Manifolds
    (Univ Nis, Fac Sci Math, 2020) Alqahtani, Lamia Saeed; Balkan, Yavuz Selim
    Recently, Chen and Uddin introduced and studied warped product pointwise bi-slant subman-ifolds of Kahler manifolds in [13]. They have obtained many interesting results. In the present paper, we investigate warped product pointwise bi-slant submanifolds in Sasakian manifolds and we derive contact version of results obtain in [13]. We give a non-trivial example to prove the existence of these submanifolds.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Hemen hemen kenmotsu f-manifoldların bir genelleştirilmesi
    (Düzce Üniversitesi, 2013) Balkan, Yavuz Selim; Aktan, Nesip
    Bu tez çalışması dört bölümden oluşmaktadır. Birinci bölüm, giriş kısmına ayrılarak genel bir literatür bilgisi verilmiştir. İkinci bölümde, gerekli temel kavramlardan söz edilmiştir. Üçüncü bölümde, hemen hemen Kenmotsu f-manifoldlar için eğrilik özellikleri verilerek hemen hemen Kenmotsu f-manifoldların bir genelleştirilmesi yapılmıştır. Son bölüm olan dördüncü bölüm ise sonuç ve önerilere ayrılarak, konu ile ilgili açık problemlere yer verilmiştir.
  • Yükleniyor...
    Küçük Resim
    Öğe
    A New Class of f-Structures Satisfying f(3) - f=0
    (Univ Nis, Fac Sci Math, 2018) Balkan, Yavuz Selim; Uddin, Siraj; Stankovic, Mica S.; Alkhaldi, Ali H.
    In this study, we introduce a new class of pseudo f-structure, called hyperbolic f-structure. We give some classifications of this new structure. Further, we extend the notion of (kappa, mu, nu)-nullity distribution to hyperbolic almost Kenmotsu f-manifolds. Finally, we construct some non-trivial examples of such manifolds.
  • Yükleniyor...
    Küçük Resim
    Öğe
    On A New Type of (k, mu)-Contact Metric Manifolds
    (Amer Inst Physics, 2017) Balkan, Yavuz Selim; Ayar, Gülhan; Aktan, Nesip
    n the present paper we introduce cyclic-parallel t-curvature tensor on (k, mu)-contact metric manifolds. We investigate some curvature properties of these type manifolds and we obtain that these type of manifolds have cyclic-parallel Ricci tensor under some conditions. Furthermore, we get these type of manifolds are K-contact under some special cases and we obtain that M is locally isometric to the product En+1 x S-n (4) under some algebraic conditions.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Some Symmetry Properties of Almost S-Manifolds
    (2017) Balkan, Yavuz Selim; Sarıkaya, Mehmet Zeki
    Manifold theory is an important topic in differential geometry. Riemannian manifolds are a wide class of differentiable manifolds. Riemannian manifolds consist of two fundamental class, as contact manifolds and complex manifolds. The notion of globally framed metric f -manifold is a generalization of these fundamental classes. Almost S -manifolds which are globally framed metric f -manifold generalize some contact manifolds carrying their dimension to (2n s). On the other hand, classification is important for Riemannian manifolds with respect to some intrinsic and extrinsic tools as well as all sciences. Moreover, symmetric manifolds play an important role in differential geometry. There are a lot of symmetry type for Riemannian manifolds with respect to different arguments. Under these considerations, in the present paper we study some symmetry conditions on almost S -manifolds. We investigate weak symmetries and ? - symmetries of these type manifolds. We obtain some necessary and sufficient conditions to characterize of their structures. Firstly, we prove that the existence of weakly symmetric and weakly Ricci symmetric almost S -manifolds under some special conditions. Then, we show that every ? -symmetric almost S -manifold verifying the (?,µ)-nullity distribution is an ? -Einstein manifold of globally framed type. Finally, we get some necessary and sufficient condition for a ? -Ricci symmetric almost S -manifold verifying the (?,µ) -nullity distribution to be an ? -Einstein manifold of globally framed type.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Yaklaşık C-manifoldların geometrisi
    (Düzce Üniversitesi, 2016) Balkan, Yavuz Selim; Aktan, Nesip
    Bu tez çalışmasında, yaklaşık manifoldların yeni bir sınıfı olan yaklaşık C-manifoldların tanımı verilmiş ve bazı eğrilik özellikleri elde edilmiştir. Elde edilen bazı özellikler, verilen örnekler üzerinde hesaplanmıştır. Ayrıca bu yeni sınıfın bazı alt manifoldları çalışılmıştır. Öte yandan yaklaşık C-manifoldların sağladığı özelliklerin, bazı D-konformal dönüşümler altında değişmez kalıp kalmadığı incelenmiştir. Bu yeni manifold sınıfı üzerinde Ricci solitonlar göz önüne alınarak bazı sınıflandırılmaları yapılmıştır. Yaklaşık C-manifoldlar genelleştirilmiş S-uzay formların alt manifoldları olarak ele alınmıştır. Son olarak bu yaklaşık C-alt manifoldların bazı sınıflandırmalarına yer verilmiştir.

| Düzce Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Düzce Üniversitesi, Kütüphane ve Dokümantasyon Daire Başkanlığı, Düzce, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim