Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Azzouz, Noureddine" seçeneğine göre listele

Listeleniyor 1 - 7 / 7
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Bullen-Mercer type inequalities for the h-convex function with twice differentiable functions
    (Univ Nis, Fac Sci Math, 2024) Benaissa, Bouharket; Azzouz, Noureddine; Budak, Huseyin
    Bullen-type inequalities for h-convex functions using conformable fractional operators are established in this study on the cone of twice-differentiable functions. This is a novel fractional version of the existing Bullen-type inequalities with simple procedures using the B-function. Furthermore, new results on Bullen-type inequalities are presented for several specific cases of convexity, generalizing existing inequalities known in the literature.
  • Küçük Resim Yok
    Öğe
    Hermite-Hadamard type inequalities for new conditions on h-convex functions via ? -Hilfer integral operators
    (Springer Basel Ag, 2024) Benaissa, Bouharket; Azzouz, Noureddine; Budak, Hüseyin
    We employ a new function class called B-function to create a new version of fractional Hermite-Hadamard and trapezoid type inequalities on the right-hand side that involves h-convex and psi -Hilfer operators. We also provide new midpoint-type inequalities using h-convex functions.
  • Küçük Resim Yok
    Öğe
    Hermite-Hadamard-Mercer type inequalities for fractional integrals: A study with h-convexity and ψ-Hilfer operators
    (Springer, 2025) Azzouz, Noureddine; Benaissa, Bouharket; Budak, Hueseyin; Demir, Izzettin
    In this paper, we first prove a generalized fractional version of Hermite-Hadamard-Mercer type inequalities using h-convex functions by means of psi-Hilfer fractional integral operators. Then, we give new identities of this type with special functions depending on psi. Moreover, we establish some new fractional integral inequalities connected with the right- and left-hand sides of Hermite-Hadamard-Mercer inequalities involving differentiable mappings whose absolute values of the derivatives are h-convex. For the development of these novel integral inequalities, we utilize h-Mercer inequality and H & ouml;lder's integral inequality. These results offer the significant advantage of being convertible into classical integral inequalities and Riemann-Liouville fractional integral inequalities for convex functions, s-convex functions, and P-convex functions.
  • Küçük Resim Yok
    Öğe
    On generalized ψ-conformable calculus: Properties and inequalities
    (Univ Nis, Fac Sci Math, 2024) Azzouz, Noureddine; Benaissa, Bouharket; Budak, Huseyin
    In this paper, we first introduce a new fractional derivatives and integrals called generalized psi-conformable derivative and generalized psi-conformable integral operators, respectively. We also show that these operators generalize various well-known fractional integral operators. Then, we present several properties of these operators including semi-group property. Moreover, we apply these operators to obtain a new Hermite-Hadamard-type inequality for convex functions. Furthermore, we obtain corresponding midpoint and trapezoid type inequalities for functions whose derivatives in absolute value are convex.
  • Küçük Resim Yok
    Öğe
    On some Grüss-type inequalities via k-weighted fractional operators
    (Univ Nis, Fac Sci Math, 2024) Benaissa, Bouharket; Azzouz, Noureddine; Sarıkaya, Mehmet Zeki
    In this paper, we employ the concept of k-weighted fractional integration of one function with respect to another function to extend the scope of Gr & uuml;ss-type fractional integral inequalities. Furthermore, we establish and provide proofs for a set of inequalities that incorporate k-weighted fractional integrals.
  • Küçük Resim Yok
    Öğe
    Simpson's quadrature formula for third differentiable and s-convex functions
    (Springer, 2024) Benaissa, Bouharket; Azzouz, Noureddine; Sarikaya, Mehmet Zeki
    This study establishes Newton-type inequalities for third differentiable and s-convex functions that use the Riemann integral. New Newton-type inequalities are also introduced using a summation parameter p >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p\geq 1$\end{document} for various convexity cases.
  • Küçük Resim Yok
    Öğe
    Weighted fractional inequalities for new conditions on h-convex functions
    (Springer, 2024) Benaissa, Bouharket; Azzouz, Noureddine; Budak, Hüseyin
    We use a new function class called B-function to establish a novel version of Hermite-Hadamard inequality for weighted psi-Hilfer operators. Additionally, we prove two new identities involving weighted psi-Hilfer operators for differentiable functions. Moreover, by employing these equalities and the properties of the B-function, we derive several trapezoid- and midpoint-type inequalities for h-convex functions. Furthermore, the obtained results are reduced to several well-known and some new inequalities by making specific choices of the function h.

| Düzce Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Düzce Üniversitesi, Kütüphane ve Dokümantasyon Daire Başkanlığı, Düzce, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim