Yazar "Atar, Necip" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Fe@Ag nanoparticles decorated reduced graphene oxide as ultrahigh capacity anode material for lithium-ion battery(Springer Heidelberg, 2015) Atar, Necip; Eren, Tanju; Yola, Mehmet Lütfi; Gerengi, Hüsnü; Wang, ShaobinIn the present study, we report the synthesis of Fe@Ag nanoparticles/2-aminoethanethiol functionalized reduced graphene oxide (rGO) composite (Fe@AuNPs-AETrGO) and its application as an improved anode material for lithium-ion batteries (LIBs). The structure of the Fe@AgNPs-AETrGO composite was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The electrochemical performance was investigated at different charge/discharge current rates by using CR2032 coin-type cells and cyclic voltammetry (CV). It was found that the spherical Fe@AuNPs were highly dispersed on the rGO sheets. Moreover, the Fe@AuNPs-AETrGO composite showed high specific gravimetric capacity of about 1500 mAh g(-1) and long-term cycle stability.Öğe Synergistic corrosion inhibition effect of 1-ethyl-1-methylpyrrolidinium tetrafluoroborate and iodide ions for low carbon steel in HCl solution(Taylor & Francis Ltd, 2016) Gerengi, Hüsnü; Uğraş, Halil İbrahim; Solomon, Moses M.; Umoren, Saviour A.; Kurtay, Mine; Atar, NecipInvestigation into the corrosion inhibition of low carbon steel in 0.1-M HCl solution by 1-ethyl-1-methylpyrrolidinium (EMTFB) and the effect of KI addition on the inhibition efficiency was carried out using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy and surface analysis (scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDAX)) techniques. Results show that EMTFB suppresses low carbon steel dissolution in the corrosive environment. Inhibition efficiency increased with the increase in EMTFB concentration. Addition of iodide ions to EMTFB raises inhibition efficiency from 75 to 98%. PDP results indicate that EMTFB affects majorly anodic reactions while EMTFB + KI act as cathodic-type inhibitor. The adsorption of EMTFB onto low carbon steel surface is by physical adsorption mechanism and follows Langmuir adsorption isotherm model. SEM and EDAX results confirm the adsorption of EMTFB alone and in combination with KI onto the steel surface.