Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Amiraliyev, G. M." seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Finite Difference Method for Advanced Volterra Integro-Differential Equation with Delay
    (Pleiades Publishing Ltd, 2025) Acar, H.; Amirali, I.; Durmaz, M. E.; Amiraliyev, G. M.
    The aim of this paper is to introduce a numerical method for advanced Volterra delay integro-differential equation with initial condition. A finite difference scheme on a uniform mesh using the trapezoidal formula is developed to numerically solve this problem. Additionally, demonstrated that this approach yields second-order convergence in the discrete maximum norm. The proposed method is validated through the presentation of numerical results.
  • Küçük Resim Yok
    Öğe
    A Monotone Type Second-Order Numerical Method for Volterra-Fredholm Integro-Differential Equation
    (Pleiades Publishing Ltd, 2025) Amirali, I.; Fedakar, B.; Amiraliyev, G. M.
    The aim of this study is to present a monotone type second-order numerical method for solving Volterra-Fredholm integro-differential equation. To solve numerically this problem we construct a finite difference scheme on a uniform mesh using composite trapezoidal rule. Also, numerical results are given to support the proposed approach.
  • Yükleniyor...
    Küçük Resim
    Öğe
    A second order accurate method for a parameterized singularly perturbed problem with integral boundary condition
    (Elsevier B.V., 2022) Kudu, M.; Amirali, I.; Amiraliyev, G. M.
    In this paper, we consider a class of parameterized singularly perturbed problems with integral boundary condition. A finite difference scheme of hybrid type with an appropriate Shishkin mesh is suggested to solve the problem. We prove that the method is of almost second order convergent in the discrete maximum norm. Numerical results are presented, which illustrate the theoretical results. © 2021 Elsevier B.V.

| Düzce Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Düzce Üniversitesi, Kütüphane ve Dokümantasyon Daire Başkanlığı, Düzce, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim