Yazar "Acar, İsmail" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Analysis of mechanical and microstructural characteristics of AISI 430 stainless steel welded by GMAW(Redakcia Kovove Materialy, 2022) Acar, İsmail; Çevik, Bekir; Gülenç, BehçetThe use of stainless steels in the machine manufacturing industry is increasing day by day. Due to the poor corrosion properties of especially unalloyed and low-alloy steels, stainless steels are among the preferred materials in industrial applications because of their superiorities such as high corrosion resistance, very good forming and welding capabilities, hygiene and aesthetic appearance. The welding requirements of stainless steels with such widespread use potential are inevitable. For this reason, studies on welding joining stainless steels are important. In this study, AISI 430 ferritic stainless steel materials were joined using different shielding gas combinations through the gas metal arc welding (GMAW) method. In the welding operations, pure argon (100 % Ar), 97 % Ar + 3 % H-2, and 93 % Ar + 7% H-2 gas combinations were used. The effect of shielding gas combined with the mechanical and metallographic tests applied to the welded sheets on the mechanical and microstructural properties of AISI 430 stainless steel was investigated. In the results obtained from the study, a noticeable grain coarsening occurred in the microstructure of the weld metal and HAZs with the addition of H-2 to the Ar gas during the welding process. The highest tensile strength was obtained from the joints welded with 97 % Ar+3 % H-2 mixture gas. As a result of the tensile test, a rupture occurred in the base metal in all welded samples. No crack or tear defect was found in the weld zone due to the bending test.Öğe The effect of shielding gas on weldability of the AISI 420 martensitic stainless steel(Walter De Gruyter Gmbh, 2023) Acar, İsmail; Çevik, Bekir; Gülenç, BehçetMost of weld defects occurring in the welding of martensitic stainless steels are caused by the presence of hydrogen. Thus, the effects of hydrogen in the weld zone need to be well-understood to estimate the quality and service life of martensitic stainless steel joints. In the present study, AISI 420 martensitic stainless steel materials were welded by using different combinations of shielding gas via the gas metal arc welding (GMAW) method. It is known that shielding gases also play a critical role in heat input, cooling rate, microstructure of weld seam, weld defects, and mechanical properties besides drying of molten weld pool. Thus, it is important to investigate the effects of shielding gases and gas combinations on the welding of martensitic stainless steels in the welding process. In the present study, 100 % Ar, 97 % Ar + 3 % H-2 and 93 % Ar + 7 % H-2 gas combinations were employed. The welded sheets were subjected to the metallographic examination as well as hardness, tensile, and bending tests. The effect of the tests and the combination of shielding gas on the mechanical and microstructural properties of AISI 420 stainless steel was investigated. The results indicated that a noticeable grain coarsening occurred in the microstructure of the weld metal and heat affected zones (HAZs) after the addition of H-2 into the Ar gas during the welding process. The highest tensile strength was obtained from the joints with 100 % Ar gas. As a result of the tensile test, rupture occurred in the base metal-HAZ transition zone in all the welded samples. In the joints welded with 97 % Ar + 3 % H-2 and 93 % Ar + 7 % H-2 gas combinations, fracture occurred in the base metal-HAZ transition zone during the bending test.