Benaissa, BouharketBudak, Huseyin2024-08-232024-08-2320240354-5180https://doi.org/10.2298/FIL2408579Bhttps://hdl.handle.net/20.500.12684/13892The main motivation of this study is to establish a general version of the Riemann-Liouville fractional integrals with two exponential parameters k and p which is determined over the (k, p)-gamma function. In particular, we present the harmonic, geometric and arithmetic (k, p)- Riemann-Liouville fractional integrals. When p = k, these integrals reduce to k-Riemann-Liouville fractional integrals. Some formulas relating to general (k, p)-Riemann-Liouville fraction integrals are also given.en10.2298/FIL2408579Binfo:eu-repo/semantics/closedAccessGeneral (k, p)-Riemann-Liouville(k,p)-gamma functionfractional integralsGeneral (k, p)-Riemann-Liouville fractional integralsArticle388257925862-s2.0-85188505105WOS:001189136100001Q3N/A