Akyar, AlaattinMert, OyaYıldız, İsmet2023-07-262023-07-2620221225-293X2288-6176https://doi.org/10.5831/HMJ.2022.44.1.135https://hdl.handle.net/20.500.12684/13257This paper aims to investigate characterizations on parameters k(1), k(2), k(3), k(4), k(5), l(1), l(2), l(3), and l(4) to find relation between the class of H(k, l, m, n, o) hypergeometric functions defined by F-5(4) [(l1, l2, l3, l4) (k1, k2, k3, k4, k5,) : z] = Sigma(infinity)(n=2) (k(1))(n) (k(2))(n) (k(3))(n) (k(4))(n) (k(5))(n)/(l(1))(n) (l(2))(n) (l(3))(n) (l(4))(n) (1)(n) z(n). We need to find k, l, m and n that lead to the necessary and sufficient condition for the function zF([W]), G = z(2 - F ([W])) and H-1[W] =z(2) d/dz (ln(z) - h(z)) to be in S*(2(-r)), r is a positive integer in the open unit disc D = {z : vertical bar z vertical bar < 1, z is an element of C} with h(z) = Sigma(infinity)(n=0) (k)(n)(l)(n)(m)(n)(n)(n) (1 + k/2)(n)/(k/2)(n)(1 + k - l)(n) (1 + k - m)(n) (1 + k - n)(n)n(1)(n) z(n) and [W] = [(k/2, 1 + k -l, 1 + k - m, 1 + k - n) (k, 1 + k/2, l,) (m, n) :z].en10.5831/HMJ.2022.44.1.135info:eu-repo/semantics/closedAccessConvex Function; Hypergeometric Function; Starlike Function; Uniformly Convex Functions; Univalent FunctionUnivalentAN INVESTIGATION ON GEOMETRIC PROPERTIES OF ANALYTIC FUNCTIONS WITH POSITIVE AND NEGATIVE COEFFICIENTS EXPRESSED BY HYPERGEOMETRIC FUNCTIONSArticle441135145WOS:000779726500011N/A