Ramazanoglu, DoguOzdemir, Ferhat2024-08-232024-08-2320231303-23991309-4181https://doi.org/10.17475/kastorman.1394874https://hdl.handle.net/20.500.12684/13967Aim of study: In this research, the surface ofFagus orientalis (beechwood) was chosen as a substrate due to its widely used strong biostructure in the wood industry. It was functionalized with ZnO, TiO2, and FAS-17 nanoparticles to enhance its service life.Material and methods: FAS-17 (Trimethoxysilane) and ammonium hexafluorotitanate were purchased from Sigma-Aldrich, and zinc borate from Etimine S.A. Methanol, ethyl alcohol, hydrochloric acid, sodium hydroxide, and zinc oxide were provided by TEKKIM. Characterization methods included FTIR, TG/DTA, XRD, SEM, and EDX. Hydrophobicity was determined by water contact angle using KSV Cam101. UV-Vis analysis used a Shimadzu UV-160 spectrophotometer, surface roughness was measured with a Marsurf M 300 device (ISO 4287), and color analysis was performed with a Datacolor Elrepho 450 X spectrometer (ASTM 2021).Main results: The thermal stability of wood was significantly improved through the hydrothermal deposition of ZnO/TiO2 nanoparticles. Additionally, hydrophobization was achieved using Triethoxy-1H,1H,1H,2H,2H,2H-perfluorodecylsilane (C14H19F13O3Si), referred to as FAS-17.Research highlights: The study demonstrated that the introduction of ZnO/TiO2 nanoparticles improved the thermal stability of wood. Furthermore, the use of FAS-17 resulted in effective hydrophobization. The thermal stability of wood was improved with ZnO/TiO2 nanoparticles. In addition, hydrophobization was supplied by FAS-17.en10.17475/kastorman.1394874info:eu-repo/semantics/openAccessFagus orientalisHydrothermal MethodZnO/TiO2/FAS-17 Nano ArticlesWoodCelluloseFilmTreatment of Fagus orientalis Surface by ZnO/TiO2/FAS-17- Based NanoparticlesArticle233175185WOS:001120636700002Q3